mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Rewrite DynamicLazy.sample_xy
This commit is contained in:
@@ -2,7 +2,7 @@
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import Any, List, TYPE_CHECKING, Tuple, Dict, Hashable
|
||||
from typing import Any, List, TYPE_CHECKING, Tuple, Dict, Hashable, Optional
|
||||
|
||||
import numpy as np
|
||||
from overrides import EnforceOverrides
|
||||
@@ -119,7 +119,11 @@ class Component:
|
||||
"""
|
||||
pass
|
||||
|
||||
def sample_xy(self, sample: Sample) -> Tuple[Dict, Dict]:
|
||||
def sample_xy(
|
||||
self,
|
||||
instance: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
"""
|
||||
Returns a pair of x and y dictionaries containing, respectively, the matrices
|
||||
of ML features and the labels for the sample. If the training sample does not
|
||||
|
||||
@@ -2,7 +2,8 @@
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import Dict, Hashable, List, Tuple, TYPE_CHECKING
|
||||
import logging
|
||||
from typing import Dict, Hashable, List, Tuple, Optional
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
@@ -11,15 +12,11 @@ from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.threshold import Threshold
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.features import TrainingSample
|
||||
|
||||
import logging
|
||||
from miplearn.features import TrainingSample, Sample
|
||||
from miplearn.instance.base import Instance
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from miplearn.solvers.learning import Instance
|
||||
|
||||
|
||||
class DynamicConstraintsComponent(Component):
|
||||
"""
|
||||
@@ -40,9 +37,9 @@ class DynamicConstraintsComponent(Component):
|
||||
self.known_cids: List[str] = []
|
||||
self.attr = attr
|
||||
|
||||
def sample_xy_with_cids(
|
||||
def sample_xy_with_cids_old(
|
||||
self,
|
||||
instance: "Instance",
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[
|
||||
Dict[Hashable, List[List[float]]],
|
||||
@@ -78,25 +75,78 @@ class DynamicConstraintsComponent(Component):
|
||||
y[category] += [[True, False]]
|
||||
return x, y, cids
|
||||
|
||||
def sample_xy_with_cids(
|
||||
self,
|
||||
instance: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Tuple[
|
||||
Dict[Hashable, List[List[float]]],
|
||||
Dict[Hashable, List[List[bool]]],
|
||||
Dict[Hashable, List[str]],
|
||||
]:
|
||||
assert instance is not None
|
||||
x: Dict[Hashable, List[List[float]]] = {}
|
||||
y: Dict[Hashable, List[List[bool]]] = {}
|
||||
cids: Dict[Hashable, List[str]] = {}
|
||||
for cid in self.known_cids:
|
||||
# Initialize categories
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
y[category] = []
|
||||
cids[category] = []
|
||||
|
||||
# Features
|
||||
features = []
|
||||
assert sample.after_lp is not None
|
||||
assert sample.after_lp.instance is not None
|
||||
features.extend(sample.after_lp.instance.to_list())
|
||||
features.extend(instance.get_constraint_features(cid))
|
||||
for ci in features:
|
||||
assert isinstance(ci, float)
|
||||
x[category].append(features)
|
||||
cids[category].append(cid)
|
||||
|
||||
# Labels
|
||||
if sample.after_mip is not None:
|
||||
assert sample.after_mip.extra is not None
|
||||
if sample.after_mip.extra[self.attr] is not None:
|
||||
if cid in sample.after_mip.extra[self.attr]:
|
||||
y[category] += [[False, True]]
|
||||
else:
|
||||
y[category] += [[True, False]]
|
||||
return x, y, cids
|
||||
|
||||
@overrides
|
||||
def sample_xy_old(
|
||||
self,
|
||||
instance: "Instance",
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
x, y, _ = self.sample_xy_with_cids_old(instance, sample)
|
||||
return x, y
|
||||
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
instance: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
x, y, _ = self.sample_xy_with_cids(instance, sample)
|
||||
return x, y
|
||||
|
||||
def sample_predict(
|
||||
self,
|
||||
instance: "Instance",
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> List[Hashable]:
|
||||
pred: List[Hashable] = []
|
||||
if len(self.known_cids) == 0:
|
||||
logger.info("Classifiers not fitted. Skipping.")
|
||||
return pred
|
||||
x, _, cids = self.sample_xy_with_cids(instance, sample)
|
||||
x, _, cids = self.sample_xy_with_cids_old(instance, sample)
|
||||
for category in x.keys():
|
||||
assert category in self.classifiers
|
||||
assert category in self.thresholds
|
||||
@@ -111,7 +161,7 @@ class DynamicConstraintsComponent(Component):
|
||||
return pred
|
||||
|
||||
@overrides
|
||||
def fit(self, training_instances: List["Instance"]) -> None:
|
||||
def fit(self, training_instances: List[Instance]) -> None:
|
||||
collected_cids = set()
|
||||
for instance in training_instances:
|
||||
instance.load()
|
||||
@@ -141,7 +191,7 @@ class DynamicConstraintsComponent(Component):
|
||||
@overrides
|
||||
def sample_evaluate_old(
|
||||
self,
|
||||
instance: "Instance",
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
assert getattr(sample, self.attr) is not None
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from typing import Dict, List, TYPE_CHECKING, Hashable, Tuple, Any
|
||||
from typing import Dict, List, TYPE_CHECKING, Hashable, Tuple, Any, Optional
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
@@ -14,7 +14,7 @@ from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.classifiers.threshold import MinProbabilityThreshold, Threshold
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.components.dynamic_common import DynamicConstraintsComponent
|
||||
from miplearn.features import TrainingSample, Features
|
||||
from miplearn.features import TrainingSample, Features, Sample
|
||||
from miplearn.types import LearningSolveStats
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -95,20 +95,28 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
@overrides
|
||||
def sample_xy_old(
|
||||
self,
|
||||
instance: "Instance",
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
return self.dynamic.sample_xy_old(instance, sample)
|
||||
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
instance: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
return self.dynamic.sample_xy(instance, sample)
|
||||
|
||||
def sample_predict(
|
||||
self,
|
||||
instance: "Instance",
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> List[Hashable]:
|
||||
return self.dynamic.sample_predict(instance, sample)
|
||||
|
||||
@overrides
|
||||
def fit(self, training_instances: List["Instance"]) -> None:
|
||||
def fit(self, training_instances: List[Instance]) -> None:
|
||||
self.dynamic.fit(training_instances)
|
||||
|
||||
@overrides
|
||||
@@ -122,7 +130,7 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
@overrides
|
||||
def sample_evaluate_old(
|
||||
self,
|
||||
instance: "Instance",
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
return self.dynamic.sample_evaluate_old(instance, sample)
|
||||
|
||||
@@ -3,23 +3,24 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from typing import Any, TYPE_CHECKING, Hashable, Set, Tuple, Dict, List
|
||||
from typing import Any, TYPE_CHECKING, Hashable, Set, Tuple, Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.classifiers.threshold import Threshold, MinProbabilityThreshold
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.components.dynamic_common import DynamicConstraintsComponent
|
||||
from miplearn.features import Features, TrainingSample
|
||||
from miplearn.features import Features, TrainingSample, Sample
|
||||
from miplearn.types import LearningSolveStats
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from miplearn.solvers.learning import LearningSolver, Instance
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
class UserCutsComponent(Component):
|
||||
@@ -103,6 +104,14 @@ class UserCutsComponent(Component):
|
||||
) -> Tuple[Dict, Dict]:
|
||||
return self.dynamic.sample_xy_old(instance, sample)
|
||||
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
instance: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Tuple[Dict, Dict]:
|
||||
return self.dynamic.sample_xy(instance, sample)
|
||||
|
||||
def sample_predict(
|
||||
self,
|
||||
instance: "Instance",
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from typing import List, Dict, Any, TYPE_CHECKING, Tuple, Hashable
|
||||
from typing import List, Dict, Any, TYPE_CHECKING, Tuple, Hashable, Optional
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
@@ -101,6 +101,7 @@ class ObjectiveValueComponent(Component):
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
_: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
||||
# Instance features
|
||||
|
||||
@@ -10,6 +10,7 @@ from typing import (
|
||||
Any,
|
||||
TYPE_CHECKING,
|
||||
Tuple,
|
||||
Optional,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
@@ -182,6 +183,7 @@ class PrimalSolutionComponent(Component):
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
_: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Tuple[Dict[Category, List[List[float]]], Dict[Category, List[List[float]]]]:
|
||||
x: Dict = {}
|
||||
|
||||
@@ -3,11 +3,12 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from typing import Dict, Tuple, List, Hashable, Any, TYPE_CHECKING, Set
|
||||
from typing import Dict, Tuple, List, Hashable, Any, TYPE_CHECKING, Set, Optional
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.classifiers.threshold import MinProbabilityThreshold, Threshold
|
||||
@@ -18,7 +19,7 @@ from miplearn.types import LearningSolveStats
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from miplearn.solvers.learning import LearningSolver, Instance
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
class LazyConstraint:
|
||||
@@ -202,6 +203,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
_: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
||||
x: Dict = {}
|
||||
|
||||
@@ -98,7 +98,7 @@ class Instance(ABC, EnforceOverrides):
|
||||
"""
|
||||
return "default"
|
||||
|
||||
def get_constraint_features(self, cid: str) -> Optional[List[float]]:
|
||||
def get_constraint_features(self, cid: str) -> List[float]:
|
||||
return [0.0]
|
||||
|
||||
def get_constraint_category(self, cid: str) -> Optional[Hashable]:
|
||||
|
||||
@@ -16,14 +16,16 @@ from miplearn.features import (
|
||||
TrainingSample,
|
||||
Features,
|
||||
InstanceFeatures,
|
||||
Sample,
|
||||
)
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.solvers.tests import assert_equals
|
||||
|
||||
E = 0.1
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def training_instances() -> List[Instance]:
|
||||
def training_instances2() -> List[Instance]:
|
||||
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
|
||||
instances[0].features = Features(
|
||||
instance=InstanceFeatures(
|
||||
@@ -76,11 +78,64 @@ def training_instances() -> List[Instance]:
|
||||
return instances
|
||||
|
||||
|
||||
def test_fit(training_instances: List[Instance]) -> None:
|
||||
@pytest.fixture
|
||||
def training_instances() -> List[Instance]:
|
||||
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
|
||||
instances[0].samples = [
|
||||
Sample(
|
||||
after_lp=Features(
|
||||
instance=InstanceFeatures(),
|
||||
),
|
||||
after_mip=Features(extra={"lazy_enforced": {"c1", "c2"}}),
|
||||
)
|
||||
]
|
||||
instances[0].samples[0].after_lp.instance.to_list = Mock( # type: ignore
|
||||
return_value=[5.0]
|
||||
)
|
||||
instances[0].get_constraint_category = Mock( # type: ignore
|
||||
side_effect=lambda cid: {
|
||||
"c1": "type-a",
|
||||
"c2": "type-a",
|
||||
"c3": "type-b",
|
||||
"c4": "type-b",
|
||||
}[cid]
|
||||
)
|
||||
instances[0].get_constraint_features = Mock( # type: ignore
|
||||
side_effect=lambda cid: {
|
||||
"c1": [1.0, 2.0, 3.0],
|
||||
"c2": [4.0, 5.0, 6.0],
|
||||
"c3": [1.0, 2.0],
|
||||
"c4": [3.0, 4.0],
|
||||
}[cid]
|
||||
)
|
||||
|
||||
return instances
|
||||
|
||||
|
||||
def test_sample_xy(training_instances: List[Instance]) -> None:
|
||||
comp = DynamicLazyConstraintsComponent()
|
||||
comp.dynamic.known_cids = ["c1", "c2", "c3", "c4"]
|
||||
x_expected = {
|
||||
"type-a": [[5.0, 1.0, 2.0, 3.0], [5.0, 4.0, 5.0, 6.0]],
|
||||
"type-b": [[5.0, 1.0, 2.0], [5.0, 3.0, 4.0]],
|
||||
}
|
||||
y_expected = {
|
||||
"type-a": [[False, True], [False, True]],
|
||||
"type-b": [[True, False], [True, False]],
|
||||
}
|
||||
x_actual, y_actual = comp.sample_xy(
|
||||
training_instances[0],
|
||||
training_instances[0].samples[0],
|
||||
)
|
||||
assert_equals(x_actual, x_expected)
|
||||
assert_equals(y_actual, y_expected)
|
||||
|
||||
|
||||
def test_fit(training_instances2: List[Instance]) -> None:
|
||||
clf = Mock(spec=Classifier)
|
||||
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
|
||||
comp = DynamicLazyConstraintsComponent(classifier=clf)
|
||||
comp.fit(training_instances)
|
||||
comp.fit(training_instances2)
|
||||
assert clf.clone.call_count == 2
|
||||
|
||||
assert "type-a" in comp.classifiers
|
||||
@@ -142,7 +197,7 @@ def test_fit(training_instances: List[Instance]) -> None:
|
||||
)
|
||||
|
||||
|
||||
def test_sample_predict_evaluate(training_instances: List[Instance]) -> None:
|
||||
def test_sample_predict_evaluate(training_instances2: List[Instance]) -> None:
|
||||
comp = DynamicLazyConstraintsComponent()
|
||||
comp.known_cids.extend(["c1", "c2", "c3", "c4"])
|
||||
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
@@ -156,13 +211,13 @@ def test_sample_predict_evaluate(training_instances: List[Instance]) -> None:
|
||||
side_effect=lambda _: np.array([[0.9, 0.1], [0.1, 0.9]])
|
||||
)
|
||||
pred = comp.sample_predict(
|
||||
training_instances[0],
|
||||
training_instances[0].training_data[0],
|
||||
training_instances2[0],
|
||||
training_instances2[0].training_data[0],
|
||||
)
|
||||
assert pred == ["c1", "c4"]
|
||||
ev = comp.sample_evaluate_old(
|
||||
training_instances[0],
|
||||
training_instances[0].training_data[0],
|
||||
training_instances2[0],
|
||||
training_instances2[0].training_data[0],
|
||||
)
|
||||
print(ev)
|
||||
assert ev == {
|
||||
|
||||
@@ -88,7 +88,7 @@ def test_sample_xy(sample: Sample) -> None:
|
||||
"Lower bound": [[1.0]],
|
||||
"Upper bound": [[2.0]],
|
||||
}
|
||||
xy = ObjectiveValueComponent().sample_xy(sample)
|
||||
xy = ObjectiveValueComponent().sample_xy(None, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
|
||||
@@ -82,7 +82,7 @@ def test_xy(sample: Sample) -> None:
|
||||
[True, False],
|
||||
]
|
||||
}
|
||||
xy = PrimalSolutionComponent().sample_xy(sample)
|
||||
xy = PrimalSolutionComponent().sample_xy(None, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
|
||||
@@ -292,7 +292,7 @@ def test_sample_xy(sample: Sample) -> None:
|
||||
"type-a": [[False, True], [False, True], [True, False]],
|
||||
"type-b": [[False, True]],
|
||||
}
|
||||
xy = StaticLazyConstraintsComponent().sample_xy(sample)
|
||||
xy = StaticLazyConstraintsComponent().sample_xy(None, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
|
||||
Reference in New Issue
Block a user