DropRedundant: Make x_y parallel

master
Alinson S. Xavier 5 years ago
parent 3b61a15ead
commit 75d1eee424

@ -48,7 +48,7 @@ class ConvertTightIneqsIntoEqsStep(Component):
def before_solve_mip(self, solver, instance, _): def before_solve_mip(self, solver, instance, _):
logger.info("Predicting tight LP constraints...") logger.info("Predicting tight LP constraints...")
x, constraints = DropRedundantInequalitiesStep._x_test( x, constraints = DropRedundantInequalitiesStep.x(
instance, instance,
constraint_ids=solver.internal_solver.get_constraint_ids(), constraint_ids=solver.internal_solver.get_constraint_ids(),
) )
@ -99,8 +99,29 @@ class ConvertTightIneqsIntoEqsStep(Component):
self.classifiers[category] = deepcopy(self.classifier_prototype) self.classifiers[category] = deepcopy(self.classifier_prototype)
self.classifiers[category].fit(x[category], y[category]) self.classifiers[category].fit(x[category], y[category])
@staticmethod
def _x_train(instances):
x = {}
for instance in tqdm(
InstanceIterator(instances),
desc="Extract (drop:x)",
disable=len(instances) < 5,
):
for training_data in instance.training_data:
cids = training_data["slacks"].keys()
for cid in cids:
category = instance.get_constraint_category(cid)
if category is None:
continue
if category not in x:
x[category] = []
x[category] += [instance.get_constraint_features(cid)]
for category in x.keys():
x[category] = np.array(x[category])
return x
def x(self, instances): def x(self, instances):
return DropRedundantInequalitiesStep._x_train(instances) return self._x_train(instances)
def y(self, instances): def y(self, instances):
y = {} y = {}

@ -7,6 +7,7 @@ from copy import deepcopy
import numpy as np import numpy as np
from tqdm import tqdm from tqdm import tqdm
from p_tqdm import p_umap
from miplearn.classifiers.counting import CountingClassifier from miplearn.classifiers.counting import CountingClassifier
from miplearn.components import classifier_evaluation_dict from miplearn.components import classifier_evaluation_dict
@ -54,7 +55,7 @@ class DropRedundantInequalitiesStep(Component):
self.current_iteration = 0 self.current_iteration = 0
logger.info("Predicting redundant LP constraints...") logger.info("Predicting redundant LP constraints...")
x, constraints = self._x_test( x, constraints = self.x(
instance, instance,
constraint_ids=solver.internal_solver.get_constraint_ids(), constraint_ids=solver.internal_solver.get_constraint_ids(),
) )
@ -98,18 +99,15 @@ class DropRedundantInequalitiesStep(Component):
} }
) )
def fit(self, training_instances): def fit(self, training_instances, n_jobs=1):
logger.debug("Extracting x and y...") x, y = self.x_y(training_instances, n_jobs=n_jobs)
x = self.x(training_instances)
y = self.y(training_instances)
logger.debug("Fitting...")
for category in tqdm(x.keys(), desc="Fit (drop)"): for category in tqdm(x.keys(), desc="Fit (drop)"):
if category not in self.classifiers: if category not in self.classifiers:
self.classifiers[category] = deepcopy(self.classifier_prototype) self.classifiers[category] = deepcopy(self.classifier_prototype)
self.classifiers[category].fit(x[category], np.array(y[category])) self.classifiers[category].fit(x[category], np.array(y[category]))
@staticmethod @staticmethod
def _x_test(instance, constraint_ids): def x(instance, constraint_ids):
x = {} x = {}
constraints = {} constraints = {}
cids = constraint_ids cids = constraint_ids
@ -126,49 +124,58 @@ class DropRedundantInequalitiesStep(Component):
x[category] = np.array(x[category]) x[category] = np.array(x[category])
return x, constraints return x, constraints
@staticmethod def x_y(self, instances, n_jobs=1):
def _x_train(instances): def _extract(instance):
x = {} x = {}
for instance in tqdm( y = {}
InstanceIterator(instances), for instance in InstanceIterator([instance]):
desc="Extract (drop:x)", for training_data in instance.training_data:
disable=len(instances) < 5, for (cid, slack) in training_data["slacks"].items():
): category = instance.get_constraint_category(cid)
for training_data in instance.training_data: if category is None:
cids = training_data["slacks"].keys() continue
for cid in cids: if category not in x:
category = instance.get_constraint_category(cid) x[category] = []
if category is None: if category not in y:
continue y[category] = []
if category not in x: if slack > self.slack_tolerance:
x[category] = [] y[category] += [[False, True]]
x[category] += [instance.get_constraint_features(cid)] else:
for category in x.keys(): y[category] += [[True, False]]
x[category] = np.array(x[category]) x[category] += [instance.get_constraint_features(cid)]
return x return x, y
if n_jobs == 1:
results = [
_extract(i)
for i in tqdm(
instances,
desc="Extract (drop 1/3)",
)
]
else:
results = p_umap(
_extract,
instances,
num_cpus=n_jobs,
desc="Extract (drop 1/3)",
)
def x(self, instances): x_combined = {}
return self._x_train(instances) y_combined = {}
for (x, y) in tqdm(results, desc="Extract (drop 2/3)"):
for category in x.keys():
if category not in x_combined:
x_combined[category] = []
y_combined[category] = []
x_combined[category] += x[category]
y_combined[category] += y[category]
def y(self, instances): for category in tqdm(x_combined.keys(), desc="Extract (drop 3/3)"):
y = {} x_combined[category] = np.array(x_combined[category])
for instance in tqdm( y_combined[category] = np.array(y_combined[category])
InstanceIterator(instances),
desc="Extract (drop:y)", return x_combined, y_combined
disable=len(instances) < 5,
):
for training_data in instance.training_data:
for (cid, slack) in training_data["slacks"].items():
category = instance.get_constraint_category(cid)
if category is None:
continue
if category not in y:
y[category] = []
if slack > self.slack_tolerance:
y[category] += [[False, True]]
else:
y[category] += [[True, False]]
return y
def predict(self, x): def predict(self, x):
y = {} y = {}
@ -185,9 +192,8 @@ class DropRedundantInequalitiesStep(Component):
y[category] += [[True, False]] y[category] += [[True, False]]
return y return y
def evaluate(self, instance): def evaluate(self, instance, n_jobs=1):
x = self.x([instance]) x, y_true = self.x_y([instance], n_jobs=n_jobs)
y_true = self.y([instance])
y_pred = self.predict(x) y_pred = self.predict(x)
tp, tn, fp, fn = 0, 0, 0, 0 tp, tn, fp, fn = 0, 0, 0, 0
for category in tqdm( for category in tqdm(

@ -289,8 +289,7 @@ def test_x_y_fit_predict_evaluate():
} }
# Should build X and Y matrices correctly # Should build X and Y matrices correctly
actual_x = component.x(instances) actual_x, actual_y = component.x_y(instances)
actual_y = component.y(instances)
for category in ["type-a", "type-b"]: for category in ["type-a", "type-b"]:
np.testing.assert_array_equal(actual_x[category], expected_x[category]) np.testing.assert_array_equal(actual_x[category], expected_x[category])
np.testing.assert_array_equal(actual_y[category], expected_y[category]) np.testing.assert_array_equal(actual_y[category], expected_y[category])
@ -392,9 +391,7 @@ def test_x_multiple_solves():
# Should build X and Y matrices correctly # Should build X and Y matrices correctly
component = DropRedundantInequalitiesStep() component = DropRedundantInequalitiesStep()
actual_x = component.x([instance]) actual_x, actual_y = component.x_y([instance])
actual_y = component.y([instance])
print(actual_x)
for category in ["type-a", "type-b"]: for category in ["type-a", "type-b"]:
np.testing.assert_array_equal(actual_x[category], expected_x[category]) np.testing.assert_array_equal(actual_x[category], expected_x[category])
np.testing.assert_array_equal(actual_y[category], expected_y[category]) np.testing.assert_array_equal(actual_y[category], expected_y[category])

Loading…
Cancel
Save