mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Implement {get,put}_vector_list
This commit is contained in:
@@ -46,7 +46,7 @@ class FeaturesExtractor:
|
||||
self._extract_user_features_constrs(instance, sample)
|
||||
self._extract_user_features_instance(instance, sample)
|
||||
self._extract_var_features_AlvLouWeh2017(sample)
|
||||
sample.put(
|
||||
sample.put_vector_list(
|
||||
"var_features",
|
||||
self._combine(
|
||||
sample,
|
||||
@@ -82,7 +82,7 @@ class FeaturesExtractor:
|
||||
sample.put_vector("lp_constr_sa_rhs_up", constraints.sa_rhs_up)
|
||||
sample.put_vector("lp_constr_slacks", constraints.slacks)
|
||||
self._extract_var_features_AlvLouWeh2017(sample, prefix="lp_")
|
||||
sample.put(
|
||||
sample.put_vector_list(
|
||||
"lp_var_features",
|
||||
self._combine(
|
||||
sample,
|
||||
@@ -103,7 +103,7 @@ class FeaturesExtractor:
|
||||
],
|
||||
),
|
||||
)
|
||||
sample.put(
|
||||
sample.put_vector_list(
|
||||
"lp_constr_features",
|
||||
self._combine(
|
||||
sample,
|
||||
@@ -118,7 +118,7 @@ class FeaturesExtractor:
|
||||
)
|
||||
instance_features_user = sample.get("instance_features_user")
|
||||
assert instance_features_user is not None
|
||||
sample.put(
|
||||
sample.put_vector(
|
||||
"lp_instance_features",
|
||||
instance_features_user
|
||||
+ [
|
||||
@@ -178,7 +178,7 @@ class FeaturesExtractor:
|
||||
user_features_i = list(user_features_i)
|
||||
user_features.append(user_features_i)
|
||||
sample.put("var_categories", categories)
|
||||
sample.put("var_features_user", user_features)
|
||||
sample.put_vector_list("var_features_user", user_features)
|
||||
|
||||
def _extract_user_features_constrs(
|
||||
self,
|
||||
@@ -227,7 +227,7 @@ class FeaturesExtractor:
|
||||
lazy.append(instance.is_constraint_lazy(cname))
|
||||
else:
|
||||
lazy.append(False)
|
||||
sample.put("constr_features_user", user_features)
|
||||
sample.put_vector_list("constr_features_user", user_features)
|
||||
sample.put_vector("constr_lazy", lazy)
|
||||
sample.put("constr_categories", categories)
|
||||
|
||||
@@ -250,7 +250,7 @@ class FeaturesExtractor:
|
||||
)
|
||||
constr_lazy = sample.get("constr_lazy")
|
||||
assert constr_lazy is not None
|
||||
sample.put("instance_features_user", user_features)
|
||||
sample.put_vector("instance_features_user", user_features)
|
||||
sample.put_scalar("static_lazy_count", sum(constr_lazy))
|
||||
|
||||
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
|
||||
@@ -331,7 +331,7 @@ class FeaturesExtractor:
|
||||
for v in f:
|
||||
assert isfinite(v), f"non-finite elements detected: {f}"
|
||||
features.append(f)
|
||||
sample.put(f"{prefix}var_features_AlvLouWeh2017", features)
|
||||
sample.put_vector_list(f"{prefix}var_features_AlvLouWeh2017", features)
|
||||
|
||||
def _combine(
|
||||
self,
|
||||
|
||||
@@ -3,13 +3,25 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, Optional, Any, Union, List
|
||||
from copy import deepcopy
|
||||
from typing import Dict, Optional, Any, Union, List, Tuple, cast
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
|
||||
Scalar = Union[None, bool, str, int, float]
|
||||
Vector = Union[None, List[bool], List[str], List[int], List[float]]
|
||||
VectorList = Union[
|
||||
List[List[bool]],
|
||||
List[List[str]],
|
||||
List[List[int]],
|
||||
List[List[float]],
|
||||
List[Optional[List[bool]]],
|
||||
List[Optional[List[str]]],
|
||||
List[Optional[List[int]]],
|
||||
List[Optional[List[float]]],
|
||||
]
|
||||
|
||||
|
||||
class Sample(ABC):
|
||||
@@ -31,6 +43,14 @@ class Sample(ABC):
|
||||
def put_vector(self, key: str, value: Vector) -> None:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_vector_list(self, key: str) -> Optional[Any]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def put_vector_list(self, key: str, value: VectorList) -> None:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get(self, key: str) -> Optional[Any]:
|
||||
pass
|
||||
@@ -65,17 +85,24 @@ class Sample(ABC):
|
||||
return
|
||||
assert False, f"Value has unsupported type: {value}"
|
||||
|
||||
def _assert_scalar(self, value: Any) -> None:
|
||||
def _assert_is_scalar(self, value: Any) -> None:
|
||||
if value is None:
|
||||
return
|
||||
if isinstance(value, (str, bool, int, float)):
|
||||
return
|
||||
assert False, f"Scalar expected; found instead: {value}"
|
||||
|
||||
def _assert_vector(self, value: Any) -> None:
|
||||
def _assert_is_vector(self, value: Any) -> None:
|
||||
assert isinstance(value, list), f"List expected; found instead: {value}"
|
||||
for v in value:
|
||||
self._assert_scalar(v)
|
||||
self._assert_is_scalar(v)
|
||||
|
||||
def _assert_is_vector_list(self, value: Any) -> None:
|
||||
assert isinstance(value, list), f"List expected; found instead: {value}"
|
||||
for v in value:
|
||||
if v is None:
|
||||
continue
|
||||
self._assert_is_vector(v)
|
||||
|
||||
|
||||
class MemorySample(Sample):
|
||||
@@ -93,20 +120,29 @@ class MemorySample(Sample):
|
||||
def get_scalar(self, key: str) -> Optional[Any]:
|
||||
return self.get(key)
|
||||
|
||||
@overrides
|
||||
def put_scalar(self, key: str, value: Scalar) -> None:
|
||||
self._assert_scalar(value)
|
||||
self.put(key, value)
|
||||
|
||||
@overrides
|
||||
def get_vector(self, key: str) -> Optional[Any]:
|
||||
return self.get(key)
|
||||
|
||||
@overrides
|
||||
def get_vector_list(self, key: str) -> Optional[Any]:
|
||||
return self.get(key)
|
||||
|
||||
@overrides
|
||||
def put_scalar(self, key: str, value: Scalar) -> None:
|
||||
self._assert_is_scalar(value)
|
||||
self.put(key, value)
|
||||
|
||||
@overrides
|
||||
def put_vector(self, key: str, value: Vector) -> None:
|
||||
if value is None:
|
||||
return
|
||||
self._assert_vector(value)
|
||||
self._assert_is_vector(value)
|
||||
self.put(key, value)
|
||||
|
||||
@overrides
|
||||
def put_vector_list(self, key: str, value: VectorList) -> None:
|
||||
self._assert_is_vector_list(value)
|
||||
self.put(key, value)
|
||||
|
||||
@overrides
|
||||
@@ -145,23 +181,55 @@ class Hdf5Sample(Sample):
|
||||
def get_vector(self, key: str) -> Optional[Any]:
|
||||
ds = self.file[key]
|
||||
assert len(ds.shape) == 1
|
||||
print(ds.dtype)
|
||||
if h5py.check_string_dtype(ds.dtype):
|
||||
return ds.asstr()[:].tolist()
|
||||
else:
|
||||
return ds[:].tolist()
|
||||
|
||||
@overrides
|
||||
def get_vector_list(self, key: str) -> Optional[Any]:
|
||||
ds = self.file[key]
|
||||
lens = ds.attrs["lengths"]
|
||||
if h5py.check_string_dtype(ds.dtype):
|
||||
padded = ds.asstr()[:].tolist()
|
||||
else:
|
||||
padded = ds[:].tolist()
|
||||
return _crop(padded, lens)
|
||||
|
||||
@overrides
|
||||
def put_scalar(self, key: str, value: Any) -> None:
|
||||
self._assert_scalar(value)
|
||||
self._assert_is_scalar(value)
|
||||
self.put(key, value)
|
||||
|
||||
@overrides
|
||||
def put_vector(self, key: str, value: Vector) -> None:
|
||||
if value is None:
|
||||
return
|
||||
self._assert_vector(value)
|
||||
self._assert_is_vector(value)
|
||||
self.put(key, value)
|
||||
|
||||
@overrides
|
||||
def put_vector_list(self, key: str, value: VectorList) -> None:
|
||||
self._assert_is_vector_list(value)
|
||||
if key in self.file:
|
||||
del self.file[key]
|
||||
padded, lens = _pad(value)
|
||||
data = None
|
||||
for v in value:
|
||||
if v is None or len(v) == 0:
|
||||
continue
|
||||
if isinstance(v[0], str):
|
||||
data = np.array(padded, dtype="S")
|
||||
elif isinstance(v[0], bool):
|
||||
data = np.array(padded, dtype=bool)
|
||||
else:
|
||||
data = np.array(padded)
|
||||
break
|
||||
assert data is not None
|
||||
ds = self.file.create_dataset(key, data=data)
|
||||
ds.attrs["lengths"] = lens
|
||||
|
||||
@overrides
|
||||
def get(self, key: str) -> Optional[Any]:
|
||||
ds = self.file[key]
|
||||
@@ -175,3 +243,45 @@ class Hdf5Sample(Sample):
|
||||
if key in self.file:
|
||||
del self.file[key]
|
||||
self.file.create_dataset(key, data=value)
|
||||
|
||||
|
||||
def _pad(veclist: VectorList) -> Tuple[VectorList, List[int]]:
|
||||
veclist = deepcopy(veclist)
|
||||
lens = [len(v) if v is not None else -1 for v in veclist]
|
||||
maxlen = max(lens)
|
||||
|
||||
# Find appropriate constant to pad the vectors
|
||||
constant: Union[int, float, str, None] = None
|
||||
for v in veclist:
|
||||
if v is None or len(v) == 0:
|
||||
continue
|
||||
if isinstance(v[0], int):
|
||||
constant = 0
|
||||
elif isinstance(v[0], float):
|
||||
constant = 0.0
|
||||
elif isinstance(v[0], str):
|
||||
constant = ""
|
||||
else:
|
||||
assert False, f"Unsupported data type: {v[0]}"
|
||||
assert constant is not None, "veclist must not be completely empty"
|
||||
|
||||
# Pad vectors
|
||||
for (i, vi) in enumerate(veclist):
|
||||
if vi is None:
|
||||
vi = veclist[i] = []
|
||||
assert isinstance(vi, list)
|
||||
for k in range(len(vi), maxlen):
|
||||
vi.append(constant)
|
||||
|
||||
return veclist, lens
|
||||
|
||||
|
||||
def _crop(veclist: VectorList, lens: List[int]) -> VectorList:
|
||||
result: VectorList = cast(VectorList, [])
|
||||
for (i, v) in enumerate(veclist):
|
||||
if lens[i] < 0:
|
||||
result.append(None) # type: ignore
|
||||
else:
|
||||
assert isinstance(v, list)
|
||||
result.append(v[: lens[i]])
|
||||
return result
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
from tempfile import NamedTemporaryFile
|
||||
from typing import Any
|
||||
|
||||
from miplearn.features.sample import MemorySample, Sample, Hdf5Sample
|
||||
from miplearn.features.sample import MemorySample, Sample, Hdf5Sample, _pad, _crop
|
||||
|
||||
|
||||
def test_memory_sample() -> None:
|
||||
@@ -29,16 +29,11 @@ def _test_sample(sample: Sample) -> None:
|
||||
_assert_roundtrip_vector(sample, [1, 2, 3])
|
||||
_assert_roundtrip_vector(sample, [1.0, 2.0, 3.0])
|
||||
|
||||
# List[Optional[List[Primitive]]]
|
||||
# _assert_roundtrip(
|
||||
# sample,
|
||||
# [
|
||||
# [1],
|
||||
# None,
|
||||
# [2, 2],
|
||||
# [3, 3, 3],
|
||||
# ],
|
||||
# )
|
||||
# VectorList
|
||||
_assert_roundtrip_vector_list(sample, [["A"], ["BB", "CCC"], None])
|
||||
_assert_roundtrip_vector_list(sample, [[True], [False, False], None])
|
||||
_assert_roundtrip_vector_list(sample, [[1], None, [2, 2], [3, 3, 3]])
|
||||
_assert_roundtrip_vector_list(sample, [[1.0], None, [2.0, 2.0], [3.0, 3.0, 3.0]])
|
||||
|
||||
|
||||
def _assert_roundtrip_scalar(sample: Sample, expected: Any) -> None:
|
||||
@@ -57,8 +52,76 @@ def _assert_roundtrip_vector(sample: Sample, expected: Any) -> None:
|
||||
_assert_same_type(actual[0], expected[0])
|
||||
|
||||
|
||||
def _assert_roundtrip_vector_list(sample: Sample, expected: Any) -> None:
|
||||
sample.put_vector_list("key", expected)
|
||||
actual = sample.get_vector_list("key")
|
||||
assert actual == expected
|
||||
assert actual is not None
|
||||
_assert_same_type(actual[0][0], expected[0][0])
|
||||
|
||||
|
||||
def _assert_same_type(actual: Any, expected: Any) -> None:
|
||||
assert isinstance(actual, expected.__class__), (
|
||||
f"Expected class {expected.__class__}, "
|
||||
f"found class {actual.__class__} instead"
|
||||
assert isinstance(
|
||||
actual, expected.__class__
|
||||
), f"Expected {expected.__class__}, found {actual.__class__} instead"
|
||||
|
||||
|
||||
def test_pad_int() -> None:
|
||||
_assert_roundtrip_pad(
|
||||
original=[[1], [2, 2, 2], [], [3, 3], [4, 4, 4, 4], None],
|
||||
expected_padded=[
|
||||
[1, 0, 0, 0],
|
||||
[2, 2, 2, 0],
|
||||
[0, 0, 0, 0],
|
||||
[3, 3, 0, 0],
|
||||
[4, 4, 4, 4],
|
||||
[0, 0, 0, 0],
|
||||
],
|
||||
expected_lens=[1, 3, 0, 2, 4, -1],
|
||||
dtype=int,
|
||||
)
|
||||
|
||||
|
||||
def test_pad_float() -> None:
|
||||
_assert_roundtrip_pad(
|
||||
original=[[1.0], [2.0, 2.0, 2.0], [3.0, 3.0], [4.0, 4.0, 4.0, 4.0], None],
|
||||
expected_padded=[
|
||||
[1.0, 0.0, 0.0, 0.0],
|
||||
[2.0, 2.0, 2.0, 0.0],
|
||||
[3.0, 3.0, 0.0, 0.0],
|
||||
[4.0, 4.0, 4.0, 4.0],
|
||||
[0.0, 0.0, 0.0, 0.0],
|
||||
],
|
||||
expected_lens=[1, 3, 2, 4, -1],
|
||||
dtype=float,
|
||||
)
|
||||
|
||||
|
||||
def test_pad_str() -> None:
|
||||
_assert_roundtrip_pad(
|
||||
original=[["A"], ["B", "B", "B"], ["C", "C"]],
|
||||
expected_padded=[["A", "", ""], ["B", "B", "B"], ["C", "C", ""]],
|
||||
expected_lens=[1, 3, 2],
|
||||
dtype=str,
|
||||
)
|
||||
|
||||
|
||||
def _assert_roundtrip_pad(
|
||||
original: Any,
|
||||
expected_padded: Any,
|
||||
expected_lens: Any,
|
||||
dtype: Any,
|
||||
) -> None:
|
||||
actual_padded, actual_lens = _pad(original)
|
||||
assert actual_padded == expected_padded
|
||||
assert actual_lens == expected_lens
|
||||
for v in actual_padded:
|
||||
for vi in v: # type: ignore
|
||||
assert isinstance(vi, dtype)
|
||||
cropped = _crop(actual_padded, actual_lens)
|
||||
assert cropped == original
|
||||
for v in cropped:
|
||||
if v is None:
|
||||
continue
|
||||
for vi in v: # type: ignore
|
||||
assert isinstance(vi, dtype)
|
||||
|
||||
Reference in New Issue
Block a user