mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-07 18:08:51 -06:00
Implement BenchmarkRunner
This commit is contained in:
45
miplearn/benchmark.py
Normal file
45
miplearn/benchmark.py
Normal file
@@ -0,0 +1,45 @@
|
||||
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from .solvers import LearningSolver
|
||||
import pandas as pd
|
||||
|
||||
class BenchmarkRunner:
|
||||
def __init__(self, solvers):
|
||||
assert isinstance(solvers, dict)
|
||||
for solver in solvers.values():
|
||||
assert isinstance(solver, LearningSolver)
|
||||
self.solvers = solvers
|
||||
self.results = None
|
||||
|
||||
def load_fit(self, filename):
|
||||
for (name, solver) in self.solvers.items():
|
||||
solver.load(filename)
|
||||
solver.fit()
|
||||
|
||||
def parallel_solve(self, instances, n_jobs=1):
|
||||
self.results = pd.DataFrame(columns=["Solver",
|
||||
"Instance",
|
||||
"Wallclock Time",
|
||||
"Optimal Value",
|
||||
])
|
||||
for (name, solver) in self.solvers.items():
|
||||
results = solver.parallel_solve(instances, n_jobs=n_jobs, label=name)
|
||||
for i in range(len(instances)):
|
||||
wallclock_time = None
|
||||
for key in ["Time", "Wall time", "Wallclock time"]:
|
||||
if key not in results[i]["Solver"][0].keys():
|
||||
continue
|
||||
if str(results[i]["Solver"][0][key]) == "<undefined>":
|
||||
continue
|
||||
wallclock_time = float(results[i]["Solver"][0][key])
|
||||
self.results = self.results.append({
|
||||
"Solver": name,
|
||||
"Instance": i,
|
||||
"Wallclock Time": wallclock_time,
|
||||
"Optimal Value": results[i]["Problem"][0]["Lower bound"]
|
||||
}, ignore_index=True)
|
||||
|
||||
def raw_results(self):
|
||||
return self.results
|
||||
Reference in New Issue
Block a user