parent
07090bac9e
commit
8f141e6a9d
@ -0,0 +1,45 @@
|
||||
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from .solvers import LearningSolver
|
||||
import pandas as pd
|
||||
|
||||
class BenchmarkRunner:
|
||||
def __init__(self, solvers):
|
||||
assert isinstance(solvers, dict)
|
||||
for solver in solvers.values():
|
||||
assert isinstance(solver, LearningSolver)
|
||||
self.solvers = solvers
|
||||
self.results = None
|
||||
|
||||
def load_fit(self, filename):
|
||||
for (name, solver) in self.solvers.items():
|
||||
solver.load(filename)
|
||||
solver.fit()
|
||||
|
||||
def parallel_solve(self, instances, n_jobs=1):
|
||||
self.results = pd.DataFrame(columns=["Solver",
|
||||
"Instance",
|
||||
"Wallclock Time",
|
||||
"Optimal Value",
|
||||
])
|
||||
for (name, solver) in self.solvers.items():
|
||||
results = solver.parallel_solve(instances, n_jobs=n_jobs, label=name)
|
||||
for i in range(len(instances)):
|
||||
wallclock_time = None
|
||||
for key in ["Time", "Wall time", "Wallclock time"]:
|
||||
if key not in results[i]["Solver"][0].keys():
|
||||
continue
|
||||
if str(results[i]["Solver"][0][key]) == "<undefined>":
|
||||
continue
|
||||
wallclock_time = float(results[i]["Solver"][0][key])
|
||||
self.results = self.results.append({
|
||||
"Solver": name,
|
||||
"Instance": i,
|
||||
"Wallclock Time": wallclock_time,
|
||||
"Optimal Value": results[i]["Problem"][0]["Lower bound"]
|
||||
}, ignore_index=True)
|
||||
|
||||
def raw_results(self):
|
||||
return self.results
|
@ -0,0 +1,41 @@
|
||||
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from miplearn import LearningSolver, BenchmarkRunner
|
||||
from miplearn.warmstart import KnnWarmStartPredictor
|
||||
from miplearn.problems.stab import MaxStableSetInstance, MaxStableSetGenerator
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
|
||||
|
||||
def test_benchmark():
|
||||
graph = nx.cycle_graph(10)
|
||||
base_weights = np.random.rand(10)
|
||||
|
||||
# Generate training and test instances
|
||||
train_instances = MaxStableSetGenerator(graph=graph,
|
||||
base_weights=base_weights,
|
||||
perturbation_scale=1.0,
|
||||
).generate(5)
|
||||
|
||||
test_instances = MaxStableSetGenerator(graph=graph,
|
||||
base_weights=base_weights,
|
||||
perturbation_scale=1.0,
|
||||
).generate(3)
|
||||
|
||||
# Training phase...
|
||||
training_solver = LearningSolver()
|
||||
training_solver.parallel_solve(train_instances, n_jobs=10)
|
||||
training_solver.save("data.bin")
|
||||
|
||||
# Test phase...
|
||||
test_solvers = {
|
||||
"Strategy A": LearningSolver(ws_predictor=None),
|
||||
"Strategy B": LearningSolver(ws_predictor=None),
|
||||
}
|
||||
benchmark = BenchmarkRunner(test_solvers)
|
||||
benchmark.load_fit("data.bin")
|
||||
benchmark.parallel_solve(test_instances, n_jobs=2)
|
||||
print(benchmark.raw_results())
|
Loading…
Reference in new issue