Implement BenchmarkRunner

pull/1/head
Alinson S. Xavier 6 years ago
parent 07090bac9e
commit 8f141e6a9d

@ -7,13 +7,14 @@ Table of contents
-----------------
* [Features](#features)
* [Installation](#installation)
* [Typical Usage](#typical-usage)
* [Basic usage](#basic-usage)
* [Using LearningSolver](#using-learningsolver)
* [Selecting the internal MIP solver](#selecting-the-internal-mip-solver)
* [Describing problem instances](#describing-problem-instances)
* [Obtaining heuristic solutions](#obtaining-heuristic-solutions)
* [Saving and loading solver state](#saving-and-loading-solver-state)
* [Solving training instances in parallel](#solving-training-instances-in-parallel)
* [Benchmark](#benchmark)
* [Current Limitations](#current-limitations)
* [References](#references)
* [Authors](#authors)
@ -38,8 +39,8 @@ The package is currently only available for Python and Pyomo. It can be installe
pip install git+ssh://git@github.com/iSoron/miplearn.git
```
Typical Usage
-------------
Basic Usage
-----------
### Using `LearningSolver`
@ -136,6 +137,37 @@ solver.load("/tmp/data.bin")
solver.solve(test_instance)
```
Benchmark
---------
MIPLearn provides the utility class `BenchmarkRunner`, which simplifies the task of comparing the performance of different solvers. The snippet below shows its basic usage:
```python
from miplearn import BenchmarkRunner, LearningSolver
# Create train and test instances
train_instances = [...]
test_instances = [...]
# Training phase...
training_solver = LearningSolver(...)
training_solver.parallel_solve(train_instances, n_jobs=10)
training_solver.save("data.bin")
# Test phase...
test_solvers = {
"Baseline": LearningSolver(...), # each solver may have different parameters
"Strategy A": LearningSolver(...),
"Strategy B": LearningSolver(...),
"Strategy C": LearningSolver(...),
}
benchmark = BenchmarkRunner(test_solvers)
benchmark.load_fit("data.bin")
benchmark.parallel_solve(test_instances, n_jobs=2)
print(benchmark.raw_results())
```
The method `load_fit` loads the saved training data into each one of the provided solvers and trains their respective ML models. The method `parallel_solve` solves the test instances in parallel, and collects solver statistics such as running time and optimal value. Finally, `raw_results` produces a Pandas DataFrame containing the results.
Current Limitations
-------------------

@ -4,3 +4,4 @@
from .instance import Instance
from .solvers import LearningSolver
from .benchmark import BenchmarkRunner

@ -0,0 +1,45 @@
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from .solvers import LearningSolver
import pandas as pd
class BenchmarkRunner:
def __init__(self, solvers):
assert isinstance(solvers, dict)
for solver in solvers.values():
assert isinstance(solver, LearningSolver)
self.solvers = solvers
self.results = None
def load_fit(self, filename):
for (name, solver) in self.solvers.items():
solver.load(filename)
solver.fit()
def parallel_solve(self, instances, n_jobs=1):
self.results = pd.DataFrame(columns=["Solver",
"Instance",
"Wallclock Time",
"Optimal Value",
])
for (name, solver) in self.solvers.items():
results = solver.parallel_solve(instances, n_jobs=n_jobs, label=name)
for i in range(len(instances)):
wallclock_time = None
for key in ["Time", "Wall time", "Wallclock time"]:
if key not in results[i]["Solver"][0].keys():
continue
if str(results[i]["Solver"][0][key]) == "<undefined>":
continue
wallclock_time = float(results[i]["Solver"][0][key])
self.results = self.results.append({
"Solver": name,
"Instance": i,
"Wallclock Time": wallclock_time,
"Optimal Value": results[i]["Problem"][0]["Lower bound"]
}, ignore_index=True)
def raw_results(self):
return self.results

@ -15,10 +15,12 @@ class MaxStableSetGenerator:
self.base_weights = base_weights
self.perturbation_scale = perturbation_scale
def generate(self):
perturbation = np.random.rand(self.graph.number_of_nodes()) * self.perturbation_scale
weights = self.base_weights + perturbation
return MaxStableSetInstance(self.graph, weights)
def generate(self, n_samples):
def _sample():
perturbation = np.random.rand(self.graph.number_of_nodes()) * self.perturbation_scale
weights = self.base_weights + perturbation
return MaxStableSetInstance(self.graph, weights)
return [_sample() for _ in range(n_samples)]
class MaxStableSetInstance(Instance):

@ -72,7 +72,7 @@ class LearningSolver:
var[index].value = 1
# Solve MILP
self._solve(model, tee=tee)
solve_results = self._solve(model, tee=tee)
# Update y_train
for category in var_split.keys():
@ -83,28 +83,36 @@ class LearningSolver:
else:
self.y_train[category] = np.vstack([self.y_train[category], y])
def parallel_solve(self, instances, n_jobs=4):
return solve_results
def parallel_solve(self, instances, n_jobs=4, label="Solve"):
def _process(instance):
solver = copy(self)
solver.solve(instance)
return solver.x_train, solver.y_train
solver = deepcopy(self)
results = solver.solve(instance)
return {
"x_train": solver.x_train,
"y_train": solver.y_train,
"results": results,
}
def _merge(results):
categories = results[0][0].keys()
x_entries = [np.vstack([r[0][c] for r in results]) for c in categories]
y_entries = [np.vstack([r[1][c] for r in results]) for c in categories]
categories = results[0]["x_train"].keys()
x_entries = [np.vstack([r["x_train"][c] for r in results]) for c in categories]
y_entries = [np.vstack([r["y_train"][c] for r in results]) for c in categories]
x_train = dict(zip(categories, x_entries))
y_train = dict(zip(categories, y_entries))
return x_train, y_train
results = [r["results"] for r in results]
return x_train, y_train, results
results = Parallel(n_jobs=n_jobs)(
delayed(_process)(i)
for i in tqdm(instances)
delayed(_process)(instance)
for instance in tqdm(instances, desc=label)
)
x_train, y_train = _merge(results)
x_train, y_train, results = _merge(results)
self.x_train = x_train
self.y_train = y_train
return results
def fit(self, x_train_dict=None, y_train_dict=None):
if x_train_dict is None:
@ -113,8 +121,9 @@ class LearningSolver:
for category in x_train_dict.keys():
x_train = x_train_dict[category]
y_train = y_train_dict[category]
self.ws_predictors[category] = deepcopy(self.ws_predictor_prototype)
self.ws_predictors[category].fit(x_train, y_train)
if self.ws_predictor_prototype is not None:
self.ws_predictors[category] = deepcopy(self.ws_predictor_prototype)
self.ws_predictors[category].fit(x_train, y_train)
def save(self, filename):
with open(filename, "wb") as file:
@ -136,6 +145,6 @@ class LearningSolver:
def _solve(self, model, tee=False):
if hasattr(self.parent_solver, "set_instance"):
self.parent_solver.set_instance(model)
self.parent_solver.solve(tee=tee, warmstart=True)
return self.parent_solver.solve(tee=tee, warmstart=True)
else:
self.parent_solver.solve(model, tee=tee, warmstart=True)
return self.parent_solver.solve(model, tee=tee, warmstart=True)

@ -0,0 +1,41 @@
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import LearningSolver, BenchmarkRunner
from miplearn.warmstart import KnnWarmStartPredictor
from miplearn.problems.stab import MaxStableSetInstance, MaxStableSetGenerator
import networkx as nx
import numpy as np
import pyomo.environ as pe
def test_benchmark():
graph = nx.cycle_graph(10)
base_weights = np.random.rand(10)
# Generate training and test instances
train_instances = MaxStableSetGenerator(graph=graph,
base_weights=base_weights,
perturbation_scale=1.0,
).generate(5)
test_instances = MaxStableSetGenerator(graph=graph,
base_weights=base_weights,
perturbation_scale=1.0,
).generate(3)
# Training phase...
training_solver = LearningSolver()
training_solver.parallel_solve(train_instances, n_jobs=10)
training_solver.save("data.bin")
# Test phase...
test_solvers = {
"Strategy A": LearningSolver(ws_predictor=None),
"Strategy B": LearningSolver(ws_predictor=None),
}
benchmark = BenchmarkRunner(test_solvers)
benchmark.load_fit("data.bin")
benchmark.parallel_solve(test_instances, n_jobs=2)
print(benchmark.raw_results())

@ -38,6 +38,6 @@ def test_parallel_solve():
capacity=3.0)
for _ in range(10)]
solver = LearningSolver()
solver.parallel_solve(instances, n_jobs=2)
solver.parallel_solve(instances, n_jobs=3)
assert len(solver.x_train[0]) == 10
assert len(solver.y_train[0]) == 10

@ -20,10 +20,10 @@ def test_stab():
def test_stab_generator():
graph = nx.cycle_graph(5)
base_weights = [1.0, 2.0, 3.0, 4.0, 5.0]
generator = MaxStableSetGenerator(graph=graph,
base_weights=base_weights,
perturbation_scale=1.0)
instances = [generator.generate() for _ in range(100_000)]
instances = MaxStableSetGenerator(graph=graph,
base_weights=base_weights,
perturbation_scale=1.0,
).generate(100_000)
weights = np.array([instance.weights for instance in instances])
weights_avg = np.round(np.average(weights, axis=0), 2)
weights_std = np.round(np.std(weights, axis=0), 2)

@ -4,3 +4,4 @@ pytest
sklearn
networkx
tqdm
pandas

@ -13,5 +13,6 @@ setup(
'sklearn',
'networkx',
'tqdm',
'pandas',
],
)
Loading…
Cancel
Save