mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Docs: minor fixes
This commit is contained in:
@@ -144,7 +144,8 @@
|
||||
|
||||
<li class="second-level"><a href="#adjusting-component-aggresiveness">Adjusting component aggresiveness</a></li>
|
||||
|
||||
<li class="third-level"><a href="#evaluating-component-performance">Evaluating component performance</a></li>
|
||||
<li class="second-level"><a href="#evaluating-component-performance">Evaluating component performance</a></li>
|
||||
|
||||
</ul>
|
||||
</div></div>
|
||||
<div class="col-md-9" role="main">
|
||||
@@ -201,8 +202,8 @@ more aggressive, this precision may be lowered.</p>
|
||||
<pre><code class="python">PrimalSolutionComponent(threshold=MinPrecisionThreshold(0.95))
|
||||
</code></pre>
|
||||
|
||||
<h3 id="evaluating-component-performance">Evaluating component performance</h3>
|
||||
<p>MIPLearn allows solver components to be modified and evaluated in isolation. In the following example, we build and
|
||||
<h2 id="evaluating-component-performance">Evaluating component performance</h2>
|
||||
<p>MIPLearn allows solver components to be modified, trained and evaluated in isolation. In the following example, we build and
|
||||
fit <code>PrimalSolutionComponent</code> outside a solver, then evaluate its performance.</p>
|
||||
<pre><code class="python">from miplearn import PrimalSolutionComponent
|
||||
|
||||
@@ -223,7 +224,7 @@ and for each type of prediction the component makes. To obtain a summary across
|
||||
pd.DataFrame(ev["Fix one"]).mean(axis=1)
|
||||
</code></pre>
|
||||
|
||||
<pre><code>Predicted positive 3.120000
|
||||
<pre><code class="text">Predicted positive 3.120000
|
||||
Predicted negative 196.880000
|
||||
Condition positive 62.500000
|
||||
Condition negative 137.500000
|
||||
@@ -256,7 +257,7 @@ import pandas as pd
|
||||
pd.DataFrame(ev).mean(axis=1)
|
||||
</code></pre>
|
||||
|
||||
<pre><code>Mean squared error 7001.977827
|
||||
<pre><code class="text">Mean squared error 7001.977827
|
||||
Explained variance 0.519790
|
||||
Max error 242.375804
|
||||
Mean absolute error 65.843924
|
||||
|
||||
@@ -273,5 +273,5 @@
|
||||
|
||||
<!--
|
||||
MkDocs version : 1.1
|
||||
Build Date UTC : 2020-05-05 18:30:25
|
||||
Build Date UTC : 2020-05-05 18:32:57
|
||||
-->
|
||||
|
||||
File diff suppressed because one or more lines are too long
Binary file not shown.
@@ -62,9 +62,9 @@ more aggressive, this precision may be lowered.
|
||||
PrimalSolutionComponent(threshold=MinPrecisionThreshold(0.95))
|
||||
```
|
||||
|
||||
### Evaluating component performance
|
||||
## Evaluating component performance
|
||||
|
||||
MIPLearn allows solver components to be modified and evaluated in isolation. In the following example, we build and
|
||||
MIPLearn allows solver components to be modified, trained and evaluated in isolation. In the following example, we build and
|
||||
fit `PrimalSolutionComponent` outside a solver, then evaluate its performance.
|
||||
|
||||
```python
|
||||
@@ -88,7 +88,7 @@ and for each type of prediction the component makes. To obtain a summary across
|
||||
import pandas as pd
|
||||
pd.DataFrame(ev["Fix one"]).mean(axis=1)
|
||||
```
|
||||
```
|
||||
```text
|
||||
Predicted positive 3.120000
|
||||
Predicted negative 196.880000
|
||||
Condition positive 62.500000
|
||||
@@ -123,7 +123,7 @@ ev = comp.evaluate(train_instances[100:150])
|
||||
import pandas as pd
|
||||
pd.DataFrame(ev).mean(axis=1)
|
||||
```
|
||||
```
|
||||
```text
|
||||
Mean squared error 7001.977827
|
||||
Explained variance 0.519790
|
||||
Max error 242.375804
|
||||
@@ -131,4 +131,5 @@ Mean absolute error 65.843924
|
||||
R2 0.517612
|
||||
Median absolute error 65.843924
|
||||
dtype: float64
|
||||
```
|
||||
```
|
||||
|
||||
|
||||
Reference in New Issue
Block a user