mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Docs: minor fixes
This commit is contained in:
@@ -62,9 +62,9 @@ more aggressive, this precision may be lowered.
|
||||
PrimalSolutionComponent(threshold=MinPrecisionThreshold(0.95))
|
||||
```
|
||||
|
||||
### Evaluating component performance
|
||||
## Evaluating component performance
|
||||
|
||||
MIPLearn allows solver components to be modified and evaluated in isolation. In the following example, we build and
|
||||
MIPLearn allows solver components to be modified, trained and evaluated in isolation. In the following example, we build and
|
||||
fit `PrimalSolutionComponent` outside a solver, then evaluate its performance.
|
||||
|
||||
```python
|
||||
@@ -88,7 +88,7 @@ and for each type of prediction the component makes. To obtain a summary across
|
||||
import pandas as pd
|
||||
pd.DataFrame(ev["Fix one"]).mean(axis=1)
|
||||
```
|
||||
```
|
||||
```text
|
||||
Predicted positive 3.120000
|
||||
Predicted negative 196.880000
|
||||
Condition positive 62.500000
|
||||
@@ -123,7 +123,7 @@ ev = comp.evaluate(train_instances[100:150])
|
||||
import pandas as pd
|
||||
pd.DataFrame(ev).mean(axis=1)
|
||||
```
|
||||
```
|
||||
```text
|
||||
Mean squared error 7001.977827
|
||||
Explained variance 0.519790
|
||||
Max error 242.375804
|
||||
@@ -131,4 +131,5 @@ Mean absolute error 65.843924
|
||||
R2 0.517612
|
||||
Median absolute error 65.843924
|
||||
dtype: float64
|
||||
```
|
||||
```
|
||||
|
||||
|
||||
Reference in New Issue
Block a user