mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Docs: minor fixes
This commit is contained in:
@@ -144,7 +144,8 @@
|
|||||||
|
|
||||||
<li class="second-level"><a href="#adjusting-component-aggresiveness">Adjusting component aggresiveness</a></li>
|
<li class="second-level"><a href="#adjusting-component-aggresiveness">Adjusting component aggresiveness</a></li>
|
||||||
|
|
||||||
<li class="third-level"><a href="#evaluating-component-performance">Evaluating component performance</a></li>
|
<li class="second-level"><a href="#evaluating-component-performance">Evaluating component performance</a></li>
|
||||||
|
|
||||||
</ul>
|
</ul>
|
||||||
</div></div>
|
</div></div>
|
||||||
<div class="col-md-9" role="main">
|
<div class="col-md-9" role="main">
|
||||||
@@ -201,8 +202,8 @@ more aggressive, this precision may be lowered.</p>
|
|||||||
<pre><code class="python">PrimalSolutionComponent(threshold=MinPrecisionThreshold(0.95))
|
<pre><code class="python">PrimalSolutionComponent(threshold=MinPrecisionThreshold(0.95))
|
||||||
</code></pre>
|
</code></pre>
|
||||||
|
|
||||||
<h3 id="evaluating-component-performance">Evaluating component performance</h3>
|
<h2 id="evaluating-component-performance">Evaluating component performance</h2>
|
||||||
<p>MIPLearn allows solver components to be modified and evaluated in isolation. In the following example, we build and
|
<p>MIPLearn allows solver components to be modified, trained and evaluated in isolation. In the following example, we build and
|
||||||
fit <code>PrimalSolutionComponent</code> outside a solver, then evaluate its performance.</p>
|
fit <code>PrimalSolutionComponent</code> outside a solver, then evaluate its performance.</p>
|
||||||
<pre><code class="python">from miplearn import PrimalSolutionComponent
|
<pre><code class="python">from miplearn import PrimalSolutionComponent
|
||||||
|
|
||||||
@@ -223,7 +224,7 @@ and for each type of prediction the component makes. To obtain a summary across
|
|||||||
pd.DataFrame(ev["Fix one"]).mean(axis=1)
|
pd.DataFrame(ev["Fix one"]).mean(axis=1)
|
||||||
</code></pre>
|
</code></pre>
|
||||||
|
|
||||||
<pre><code>Predicted positive 3.120000
|
<pre><code class="text">Predicted positive 3.120000
|
||||||
Predicted negative 196.880000
|
Predicted negative 196.880000
|
||||||
Condition positive 62.500000
|
Condition positive 62.500000
|
||||||
Condition negative 137.500000
|
Condition negative 137.500000
|
||||||
@@ -256,7 +257,7 @@ import pandas as pd
|
|||||||
pd.DataFrame(ev).mean(axis=1)
|
pd.DataFrame(ev).mean(axis=1)
|
||||||
</code></pre>
|
</code></pre>
|
||||||
|
|
||||||
<pre><code>Mean squared error 7001.977827
|
<pre><code class="text">Mean squared error 7001.977827
|
||||||
Explained variance 0.519790
|
Explained variance 0.519790
|
||||||
Max error 242.375804
|
Max error 242.375804
|
||||||
Mean absolute error 65.843924
|
Mean absolute error 65.843924
|
||||||
|
|||||||
@@ -273,5 +273,5 @@
|
|||||||
|
|
||||||
<!--
|
<!--
|
||||||
MkDocs version : 1.1
|
MkDocs version : 1.1
|
||||||
Build Date UTC : 2020-05-05 18:30:25
|
Build Date UTC : 2020-05-05 18:32:57
|
||||||
-->
|
-->
|
||||||
|
|||||||
File diff suppressed because one or more lines are too long
Binary file not shown.
@@ -62,9 +62,9 @@ more aggressive, this precision may be lowered.
|
|||||||
PrimalSolutionComponent(threshold=MinPrecisionThreshold(0.95))
|
PrimalSolutionComponent(threshold=MinPrecisionThreshold(0.95))
|
||||||
```
|
```
|
||||||
|
|
||||||
### Evaluating component performance
|
## Evaluating component performance
|
||||||
|
|
||||||
MIPLearn allows solver components to be modified and evaluated in isolation. In the following example, we build and
|
MIPLearn allows solver components to be modified, trained and evaluated in isolation. In the following example, we build and
|
||||||
fit `PrimalSolutionComponent` outside a solver, then evaluate its performance.
|
fit `PrimalSolutionComponent` outside a solver, then evaluate its performance.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
@@ -88,7 +88,7 @@ and for each type of prediction the component makes. To obtain a summary across
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
pd.DataFrame(ev["Fix one"]).mean(axis=1)
|
pd.DataFrame(ev["Fix one"]).mean(axis=1)
|
||||||
```
|
```
|
||||||
```
|
```text
|
||||||
Predicted positive 3.120000
|
Predicted positive 3.120000
|
||||||
Predicted negative 196.880000
|
Predicted negative 196.880000
|
||||||
Condition positive 62.500000
|
Condition positive 62.500000
|
||||||
@@ -123,7 +123,7 @@ ev = comp.evaluate(train_instances[100:150])
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
pd.DataFrame(ev).mean(axis=1)
|
pd.DataFrame(ev).mean(axis=1)
|
||||||
```
|
```
|
||||||
```
|
```text
|
||||||
Mean squared error 7001.977827
|
Mean squared error 7001.977827
|
||||||
Explained variance 0.519790
|
Explained variance 0.519790
|
||||||
Max error 242.375804
|
Max error 242.375804
|
||||||
@@ -131,4 +131,5 @@ Mean absolute error 65.843924
|
|||||||
R2 0.517612
|
R2 0.517612
|
||||||
Median absolute error 65.843924
|
Median absolute error 65.843924
|
||||||
dtype: float64
|
dtype: float64
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user