|
|
|
@ -144,7 +144,8 @@
|
|
|
|
|
|
|
|
|
|
<li class="second-level"><a href="#adjusting-component-aggresiveness">Adjusting component aggresiveness</a></li>
|
|
|
|
|
|
|
|
|
|
<li class="third-level"><a href="#evaluating-component-performance">Evaluating component performance</a></li>
|
|
|
|
|
<li class="second-level"><a href="#evaluating-component-performance">Evaluating component performance</a></li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
|
|
</div></div>
|
|
|
|
|
<div class="col-md-9" role="main">
|
|
|
|
@ -201,8 +202,8 @@ more aggressive, this precision may be lowered.</p>
|
|
|
|
|
<pre><code class="python">PrimalSolutionComponent(threshold=MinPrecisionThreshold(0.95))
|
|
|
|
|
</code></pre>
|
|
|
|
|
|
|
|
|
|
<h3 id="evaluating-component-performance">Evaluating component performance</h3>
|
|
|
|
|
<p>MIPLearn allows solver components to be modified and evaluated in isolation. In the following example, we build and
|
|
|
|
|
<h2 id="evaluating-component-performance">Evaluating component performance</h2>
|
|
|
|
|
<p>MIPLearn allows solver components to be modified, trained and evaluated in isolation. In the following example, we build and
|
|
|
|
|
fit <code>PrimalSolutionComponent</code> outside a solver, then evaluate its performance.</p>
|
|
|
|
|
<pre><code class="python">from miplearn import PrimalSolutionComponent
|
|
|
|
|
|
|
|
|
@ -223,7 +224,7 @@ and for each type of prediction the component makes. To obtain a summary across
|
|
|
|
|
pd.DataFrame(ev["Fix one"]).mean(axis=1)
|
|
|
|
|
</code></pre>
|
|
|
|
|
|
|
|
|
|
<pre><code>Predicted positive 3.120000
|
|
|
|
|
<pre><code class="text">Predicted positive 3.120000
|
|
|
|
|
Predicted negative 196.880000
|
|
|
|
|
Condition positive 62.500000
|
|
|
|
|
Condition negative 137.500000
|
|
|
|
@ -256,7 +257,7 @@ import pandas as pd
|
|
|
|
|
pd.DataFrame(ev).mean(axis=1)
|
|
|
|
|
</code></pre>
|
|
|
|
|
|
|
|
|
|
<pre><code>Mean squared error 7001.977827
|
|
|
|
|
<pre><code class="text">Mean squared error 7001.977827
|
|
|
|
|
Explained variance 0.519790
|
|
|
|
|
Max error 242.375804
|
|
|
|
|
Mean absolute error 65.843924
|
|
|
|
|