mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Enforce more overrides
This commit is contained in:
@@ -27,3 +27,6 @@ from .solvers.learning import LearningSolver
|
||||
from .solvers.pyomo.base import BasePyomoSolver
|
||||
from .solvers.pyomo.cplex import CplexPyomoSolver
|
||||
from .solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||
|
||||
# noinspection PyUnresolvedReferences
|
||||
from overrides import overrides
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
from typing import Any, List, TYPE_CHECKING, Tuple, Dict, Hashable
|
||||
|
||||
import numpy as np
|
||||
from overrides import EnforceOverrides
|
||||
|
||||
from miplearn.features import TrainingSample, Features
|
||||
from miplearn.instance.base import Instance
|
||||
@@ -15,7 +16,7 @@ if TYPE_CHECKING:
|
||||
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
class Component:
|
||||
class Component(EnforceOverrides):
|
||||
"""
|
||||
A Component is an object which adds functionality to a LearningSolver.
|
||||
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
from typing import Dict, Hashable, List, Tuple, TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.threshold import Threshold
|
||||
@@ -73,6 +74,7 @@ class DynamicConstraintsComponent(Component):
|
||||
y[category] += [[True, False]]
|
||||
return x, y, cids
|
||||
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
instance: "Instance",
|
||||
@@ -101,6 +103,7 @@ class DynamicConstraintsComponent(Component):
|
||||
pred += [cids[category][i]]
|
||||
return pred
|
||||
|
||||
@overrides
|
||||
def fit(self, training_instances: List["Instance"]) -> None:
|
||||
collected_cids = set()
|
||||
for instance in training_instances:
|
||||
@@ -114,6 +117,7 @@ class DynamicConstraintsComponent(Component):
|
||||
self.known_cids.extend(sorted(collected_cids))
|
||||
super().fit(training_instances)
|
||||
|
||||
@overrides
|
||||
def fit_xy(
|
||||
self,
|
||||
x: Dict[Hashable, np.ndarray],
|
||||
@@ -127,6 +131,7 @@ class DynamicConstraintsComponent(Component):
|
||||
self.classifiers[category].fit(npx, npy)
|
||||
self.thresholds[category].fit(self.classifiers[category], npx, npy)
|
||||
|
||||
@overrides
|
||||
def sample_evaluate(
|
||||
self,
|
||||
instance: "Instance",
|
||||
|
||||
@@ -6,6 +6,7 @@ import logging
|
||||
from typing import Dict, List, TYPE_CHECKING, Hashable, Tuple, Any
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.classifiers import Classifier
|
||||
@@ -53,6 +54,7 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
cobj = instance.build_lazy_constraint(model, cid)
|
||||
solver.internal_solver.add_constraint(cobj)
|
||||
|
||||
@overrides
|
||||
def before_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -68,6 +70,7 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
logger.info("Enforcing %d lazy constraints..." % len(cids))
|
||||
self.enforce(cids, instance, model, solver)
|
||||
|
||||
@overrides
|
||||
def iteration_cb(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -89,6 +92,7 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
|
||||
# Delegate ML methods to self.dynamic
|
||||
# -------------------------------------------------------------------
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
instance: "Instance",
|
||||
@@ -103,9 +107,11 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
) -> List[Hashable]:
|
||||
return self.dynamic.sample_predict(instance, sample)
|
||||
|
||||
@overrides
|
||||
def fit(self, training_instances: List["Instance"]) -> None:
|
||||
self.dynamic.fit(training_instances)
|
||||
|
||||
@overrides
|
||||
def fit_xy(
|
||||
self,
|
||||
x: Dict[Hashable, np.ndarray],
|
||||
@@ -113,6 +119,7 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
) -> None:
|
||||
self.dynamic.fit_xy(x, y)
|
||||
|
||||
@overrides
|
||||
def sample_evaluate(
|
||||
self,
|
||||
instance: "Instance",
|
||||
|
||||
@@ -6,6 +6,7 @@ import logging
|
||||
from typing import Any, TYPE_CHECKING, Hashable, Set, Tuple, Dict, List
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
@@ -35,6 +36,7 @@ class UserCutsComponent(Component):
|
||||
self.enforced: Set[Hashable] = set()
|
||||
self.n_added_in_callback = 0
|
||||
|
||||
@overrides
|
||||
def before_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -55,6 +57,7 @@ class UserCutsComponent(Component):
|
||||
solver.internal_solver.add_constraint(cobj)
|
||||
stats["UserCuts: Added ahead-of-time"] = len(cids)
|
||||
|
||||
@overrides
|
||||
def user_cut_cb(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -78,6 +81,7 @@ class UserCutsComponent(Component):
|
||||
if len(cids) > 0:
|
||||
logger.debug(f"Added {len(cids)} violated user cuts")
|
||||
|
||||
@overrides
|
||||
def after_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -93,6 +97,7 @@ class UserCutsComponent(Component):
|
||||
|
||||
# Delegate ML methods to self.dynamic
|
||||
# -------------------------------------------------------------------
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
instance: "Instance",
|
||||
@@ -107,9 +112,11 @@ class UserCutsComponent(Component):
|
||||
) -> List[Hashable]:
|
||||
return self.dynamic.sample_predict(instance, sample)
|
||||
|
||||
@overrides
|
||||
def fit(self, training_instances: List["Instance"]) -> None:
|
||||
self.dynamic.fit(training_instances)
|
||||
|
||||
@overrides
|
||||
def fit_xy(
|
||||
self,
|
||||
x: Dict[Hashable, np.ndarray],
|
||||
@@ -117,6 +124,7 @@ class UserCutsComponent(Component):
|
||||
) -> None:
|
||||
self.dynamic.fit_xy(x, y)
|
||||
|
||||
@overrides
|
||||
def sample_evaluate(
|
||||
self,
|
||||
instance: "Instance",
|
||||
|
||||
@@ -6,6 +6,7 @@ import logging
|
||||
from typing import List, Dict, Any, TYPE_CHECKING, Tuple, Hashable
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
from sklearn.linear_model import LinearRegression
|
||||
|
||||
from miplearn.classifiers import Regressor
|
||||
@@ -34,6 +35,7 @@ class ObjectiveValueComponent(Component):
|
||||
self.regressors: Dict[str, Regressor] = {}
|
||||
self.regressor_prototype = regressor
|
||||
|
||||
@overrides
|
||||
def before_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -49,6 +51,7 @@ class ObjectiveValueComponent(Component):
|
||||
logger.info(f"Predicted {c.lower()}: %.6e" % v)
|
||||
stats[f"Objective: Predicted {c.lower()}"] = v # type: ignore
|
||||
|
||||
@overrides
|
||||
def fit_xy(
|
||||
self,
|
||||
x: Dict[Hashable, np.ndarray],
|
||||
@@ -73,6 +76,7 @@ class ObjectiveValueComponent(Component):
|
||||
logger.info(f"{c} regressor not fitted. Skipping.")
|
||||
return pred
|
||||
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
instance: Instance,
|
||||
@@ -94,6 +98,7 @@ class ObjectiveValueComponent(Component):
|
||||
y["Upper bound"] = [[sample.upper_bound]]
|
||||
return x, y
|
||||
|
||||
@overrides
|
||||
def sample_evaluate(
|
||||
self,
|
||||
instance: Instance,
|
||||
|
||||
@@ -13,6 +13,7 @@ from typing import (
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.adaptive import AdaptiveClassifier
|
||||
@@ -58,6 +59,7 @@ class PrimalSolutionComponent(Component):
|
||||
self.threshold_prototype = threshold
|
||||
self.classifier_prototype = classifier
|
||||
|
||||
@overrides
|
||||
def before_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -137,6 +139,7 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
return solution
|
||||
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
instance: Instance,
|
||||
@@ -172,6 +175,7 @@ class PrimalSolutionComponent(Component):
|
||||
y[category] += [[opt_value < 0.5, opt_value >= 0.5]]
|
||||
return x, y
|
||||
|
||||
@overrides
|
||||
def sample_evaluate(
|
||||
self,
|
||||
instance: Instance,
|
||||
@@ -212,6 +216,7 @@ class PrimalSolutionComponent(Component):
|
||||
),
|
||||
}
|
||||
|
||||
@overrides
|
||||
def fit_xy(
|
||||
self,
|
||||
x: Dict[Hashable, np.ndarray],
|
||||
|
||||
@@ -6,6 +6,7 @@ import logging
|
||||
from typing import Dict, Tuple, List, Hashable, Any, TYPE_CHECKING, Set
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
@@ -49,6 +50,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
self.n_restored: int = 0
|
||||
self.n_iterations: int = 0
|
||||
|
||||
@overrides
|
||||
def before_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -84,6 +86,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
self.n_restored = 0
|
||||
self.n_iterations = 0
|
||||
|
||||
@overrides
|
||||
def after_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -97,6 +100,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
stats["LazyStatic: Restored"] = self.n_restored
|
||||
stats["LazyStatic: Iterations"] = self.n_iterations
|
||||
|
||||
@overrides
|
||||
def iteration_cb(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -108,6 +112,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
else:
|
||||
return self._check_and_add(solver)
|
||||
|
||||
@overrides
|
||||
def lazy_cb(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
@@ -170,6 +175,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
enforced_cids += [category_to_cids[category][i]]
|
||||
return enforced_cids
|
||||
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
instance: "Instance",
|
||||
@@ -195,6 +201,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
y[category] += [[True, False]]
|
||||
return x, y
|
||||
|
||||
@overrides
|
||||
def fit_xy(
|
||||
self,
|
||||
x: Dict[Hashable, np.ndarray],
|
||||
|
||||
Reference in New Issue
Block a user