Add save chart function to BenchmarkRunner

pull/3/head
Alinson S. Xavier 5 years ago
parent 869e4b4161
commit 9c816badfb

@ -18,13 +18,11 @@ class BenchmarkRunner:
self.solvers = solvers
self.results = None
def solve(self, instances, fit=True, tee=False):
def solve(self, instances, tee=False):
for (name, solver) in self.solvers.items():
for i in tqdm(range(len((instances)))):
results = solver.solve(deepcopy(instances[i]), tee=tee)
self._push_result(results, solver=solver, name=name, instance=i)
if fit:
solver.fit()
def parallel_solve(self, instances, n_jobs=1, n_trials=1):
instances = instances * n_trials
@ -72,6 +70,9 @@ class BenchmarkRunner:
lb = result["Lower bound"]
ub = result["Upper bound"]
gap = (ub - lb) / lb
if "Predicted LB" not in result:
result["Predicted LB"] = float("nan")
result["Predicted UB"] = float("nan")
self.results = self.results.append({
"Solver": name,
"Instance": instance,
@ -101,3 +102,81 @@ class BenchmarkRunner:
self.results["Gap"] / best_gap
self.results["Relative Nodes"] = \
self.results["Nodes"] / best_nodes
def save_chart(self, filename):
import matplotlib.pyplot as plt
import seaborn as sns
from numpy import median
sns.set_style("whitegrid")
sns.set_palette("Blues_r")
results = self.raw_results()
results["Gap (%)"] = results["Gap"] * 100.0
sense = results.loc[0, "Sense"]
if sense == "min":
primal_column = "Relative Upper Bound"
obj_column = "Upper Bound"
predicted_obj_column = "Predicted UB"
else:
primal_column = "Relative Lower Bound"
obj_column = "Lower Bound"
predicted_obj_column = "Predicted LB"
fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=1,
ncols=4,
figsize=(12,4),
gridspec_kw={'width_ratios': [2, 1, 1, 2]})
# Figure 1: Solver x Wallclock Time
sns.stripplot(x="Solver",
y="Wallclock Time",
data=results,
ax=ax1,
jitter=0.25,
size=4.0,
);
sns.barplot(x="Solver",
y="Wallclock Time",
data=results,
ax=ax1,
errwidth=0.,
alpha=0.4,
estimator=median,
);
ax1.set(ylabel='Wallclock Time (s)')
# Figure 2: Solver x Gap (%)
ax2.set_ylim(-0.5, 5.5)
sns.stripplot(x="Solver",
y="Gap (%)",
jitter=0.25,
data=results[results["Mode"] != "heuristic"],
ax=ax2,
size=4.0,
);
# Figure 3: Solver x Primal Value
ax3.set_ylim(0.95,1.05)
sns.stripplot(x="Solver",
y=primal_column,
jitter=0.25,
data=results[results["Mode"] == "heuristic"],
ax=ax3,
);
# Figure 4: Predicted vs Actual Objective Value
sns.scatterplot(x=obj_column,
y=predicted_obj_column,
hue="Solver",
data=results[results["Mode"] != "heuristic"],
ax=ax4,
);
xlim, ylim = ax4.get_xlim(), ax4.get_ylim()
ax4.plot([-1e10, 1e10], [-1e10, 1e10], ls='-', color="#cccccc");
ax4.set_xlim(xlim)
ax4.set_ylim(ylim)
ax4.get_legend().remove()
fig.tight_layout()
plt.savefig(filename, bbox_inches='tight', dpi=150)
Loading…
Cancel
Save