|
|
|
@ -18,13 +18,11 @@ class BenchmarkRunner:
|
|
|
|
|
self.solvers = solvers
|
|
|
|
|
self.results = None
|
|
|
|
|
|
|
|
|
|
def solve(self, instances, fit=True, tee=False):
|
|
|
|
|
def solve(self, instances, tee=False):
|
|
|
|
|
for (name, solver) in self.solvers.items():
|
|
|
|
|
for i in tqdm(range(len((instances)))):
|
|
|
|
|
results = solver.solve(deepcopy(instances[i]), tee=tee)
|
|
|
|
|
self._push_result(results, solver=solver, name=name, instance=i)
|
|
|
|
|
if fit:
|
|
|
|
|
solver.fit()
|
|
|
|
|
|
|
|
|
|
def parallel_solve(self, instances, n_jobs=1, n_trials=1):
|
|
|
|
|
instances = instances * n_trials
|
|
|
|
@ -72,6 +70,9 @@ class BenchmarkRunner:
|
|
|
|
|
lb = result["Lower bound"]
|
|
|
|
|
ub = result["Upper bound"]
|
|
|
|
|
gap = (ub - lb) / lb
|
|
|
|
|
if "Predicted LB" not in result:
|
|
|
|
|
result["Predicted LB"] = float("nan")
|
|
|
|
|
result["Predicted UB"] = float("nan")
|
|
|
|
|
self.results = self.results.append({
|
|
|
|
|
"Solver": name,
|
|
|
|
|
"Instance": instance,
|
|
|
|
@ -101,3 +102,81 @@ class BenchmarkRunner:
|
|
|
|
|
self.results["Gap"] / best_gap
|
|
|
|
|
self.results["Relative Nodes"] = \
|
|
|
|
|
self.results["Nodes"] / best_nodes
|
|
|
|
|
|
|
|
|
|
def save_chart(self, filename):
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
import seaborn as sns
|
|
|
|
|
from numpy import median
|
|
|
|
|
|
|
|
|
|
sns.set_style("whitegrid")
|
|
|
|
|
sns.set_palette("Blues_r")
|
|
|
|
|
results = self.raw_results()
|
|
|
|
|
results["Gap (%)"] = results["Gap"] * 100.0
|
|
|
|
|
|
|
|
|
|
sense = results.loc[0, "Sense"]
|
|
|
|
|
if sense == "min":
|
|
|
|
|
primal_column = "Relative Upper Bound"
|
|
|
|
|
obj_column = "Upper Bound"
|
|
|
|
|
predicted_obj_column = "Predicted UB"
|
|
|
|
|
else:
|
|
|
|
|
primal_column = "Relative Lower Bound"
|
|
|
|
|
obj_column = "Lower Bound"
|
|
|
|
|
predicted_obj_column = "Predicted LB"
|
|
|
|
|
|
|
|
|
|
fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=1,
|
|
|
|
|
ncols=4,
|
|
|
|
|
figsize=(12,4),
|
|
|
|
|
gridspec_kw={'width_ratios': [2, 1, 1, 2]})
|
|
|
|
|
|
|
|
|
|
# Figure 1: Solver x Wallclock Time
|
|
|
|
|
sns.stripplot(x="Solver",
|
|
|
|
|
y="Wallclock Time",
|
|
|
|
|
data=results,
|
|
|
|
|
ax=ax1,
|
|
|
|
|
jitter=0.25,
|
|
|
|
|
size=4.0,
|
|
|
|
|
);
|
|
|
|
|
sns.barplot(x="Solver",
|
|
|
|
|
y="Wallclock Time",
|
|
|
|
|
data=results,
|
|
|
|
|
ax=ax1,
|
|
|
|
|
errwidth=0.,
|
|
|
|
|
alpha=0.4,
|
|
|
|
|
estimator=median,
|
|
|
|
|
);
|
|
|
|
|
ax1.set(ylabel='Wallclock Time (s)')
|
|
|
|
|
|
|
|
|
|
# Figure 2: Solver x Gap (%)
|
|
|
|
|
ax2.set_ylim(-0.5, 5.5)
|
|
|
|
|
sns.stripplot(x="Solver",
|
|
|
|
|
y="Gap (%)",
|
|
|
|
|
jitter=0.25,
|
|
|
|
|
data=results[results["Mode"] != "heuristic"],
|
|
|
|
|
ax=ax2,
|
|
|
|
|
size=4.0,
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
# Figure 3: Solver x Primal Value
|
|
|
|
|
ax3.set_ylim(0.95,1.05)
|
|
|
|
|
sns.stripplot(x="Solver",
|
|
|
|
|
y=primal_column,
|
|
|
|
|
jitter=0.25,
|
|
|
|
|
data=results[results["Mode"] == "heuristic"],
|
|
|
|
|
ax=ax3,
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
# Figure 4: Predicted vs Actual Objective Value
|
|
|
|
|
sns.scatterplot(x=obj_column,
|
|
|
|
|
y=predicted_obj_column,
|
|
|
|
|
hue="Solver",
|
|
|
|
|
data=results[results["Mode"] != "heuristic"],
|
|
|
|
|
ax=ax4,
|
|
|
|
|
);
|
|
|
|
|
xlim, ylim = ax4.get_xlim(), ax4.get_ylim()
|
|
|
|
|
ax4.plot([-1e10, 1e10], [-1e10, 1e10], ls='-', color="#cccccc");
|
|
|
|
|
ax4.set_xlim(xlim)
|
|
|
|
|
ax4.set_ylim(ylim)
|
|
|
|
|
ax4.get_legend().remove()
|
|
|
|
|
|
|
|
|
|
fig.tight_layout()
|
|
|
|
|
plt.savefig(filename, bbox_inches='tight', dpi=150)
|