|
|
@ -23,18 +23,13 @@ class PrimalSolutionComponent(Component):
|
|
|
|
def __init__(self,
|
|
|
|
def __init__(self,
|
|
|
|
classifier=AdaptiveClassifier(),
|
|
|
|
classifier=AdaptiveClassifier(),
|
|
|
|
mode="exact",
|
|
|
|
mode="exact",
|
|
|
|
max_fpr=[1e-3, 1e-3],
|
|
|
|
threshold=0.50,
|
|
|
|
min_threshold=[0.75, 0.75],
|
|
|
|
|
|
|
|
dynamic_thresholds=True,
|
|
|
|
|
|
|
|
):
|
|
|
|
):
|
|
|
|
self.mode = mode
|
|
|
|
self.mode = mode
|
|
|
|
self.is_warm_start_available = False
|
|
|
|
self.is_warm_start_available = False
|
|
|
|
self.max_fpr = max_fpr
|
|
|
|
|
|
|
|
self.min_threshold = min_threshold
|
|
|
|
|
|
|
|
self.thresholds = {}
|
|
|
|
|
|
|
|
self.classifiers = {}
|
|
|
|
self.classifiers = {}
|
|
|
|
|
|
|
|
self.threshold = threshold
|
|
|
|
self.classifier_prototype = classifier
|
|
|
|
self.classifier_prototype = classifier
|
|
|
|
self.dynamic_thresholds = dynamic_thresholds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def before_solve(self, solver, instance, model):
|
|
|
|
def before_solve(self, solver, instance, model):
|
|
|
|
solution = self.predict(instance)
|
|
|
|
solution = self.predict(instance)
|
|
|
@ -51,75 +46,46 @@ class PrimalSolutionComponent(Component):
|
|
|
|
features = VariableFeaturesExtractor().extract(training_instances)
|
|
|
|
features = VariableFeaturesExtractor().extract(training_instances)
|
|
|
|
solutions = SolutionExtractor().extract(training_instances)
|
|
|
|
solutions = SolutionExtractor().extract(training_instances)
|
|
|
|
|
|
|
|
|
|
|
|
def _fit(args):
|
|
|
|
for category in features.keys():
|
|
|
|
category, label = args[0], args[1]
|
|
|
|
|
|
|
|
x_train = features[category]
|
|
|
|
x_train = features[category]
|
|
|
|
y_train = solutions[category]
|
|
|
|
for label in [0, 1]:
|
|
|
|
y = y_train[:, label].astype(int)
|
|
|
|
y_train = solutions[category][:, label].astype(int)
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(self.classifier_prototype, list):
|
|
|
|
# If all samples are either positive or negative, make constant predictions
|
|
|
|
clf = deepcopy(self.classifier_prototype[label])
|
|
|
|
y_avg = np.average(y_train)
|
|
|
|
else:
|
|
|
|
if y_avg < 0.001 or y_avg >= 0.999:
|
|
|
|
clf = deepcopy(self.classifier_prototype)
|
|
|
|
self.classifiers[category, label] = round(y_avg)
|
|
|
|
clf.fit(x_train, y)
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
y_avg = np.average(y)
|
|
|
|
# Create a copy of classifier prototype and train it
|
|
|
|
if (not self.dynamic_thresholds) or y_avg <= 0.001 or y_avg >= 0.999:
|
|
|
|
if isinstance(self.classifier_prototype, list):
|
|
|
|
return {"classifier": clf,
|
|
|
|
clf = deepcopy(self.classifier_prototype[label])
|
|
|
|
"threshold": self.min_threshold[label]}
|
|
|
|
else:
|
|
|
|
|
|
|
|
clf = deepcopy(self.classifier_prototype)
|
|
|
|
proba = clf.predict_proba(x_train)
|
|
|
|
clf.fit(x_train, y_train)
|
|
|
|
assert isinstance(proba, np.ndarray), \
|
|
|
|
|
|
|
|
"classifier should return numpy array"
|
|
|
|
|
|
|
|
assert proba.shape == (x_train.shape[0], 2), \
|
|
|
|
|
|
|
|
"classifier should return (%d,%d)-shaped array, not %s" % (
|
|
|
|
|
|
|
|
x_train.shape[0], 2, str(proba.shape))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y_scores = proba[:, 1]
|
|
|
|
|
|
|
|
fpr, tpr, thresholds = roc_curve(y, y_scores)
|
|
|
|
|
|
|
|
k = 0
|
|
|
|
|
|
|
|
while True:
|
|
|
|
|
|
|
|
if (k + 1) > len(fpr):
|
|
|
|
|
|
|
|
break
|
|
|
|
|
|
|
|
if fpr[k + 1] > self.max_fpr[label]:
|
|
|
|
|
|
|
|
break
|
|
|
|
|
|
|
|
if thresholds[k + 1] < self.min_threshold[label]:
|
|
|
|
|
|
|
|
break
|
|
|
|
|
|
|
|
k = k + 1
|
|
|
|
|
|
|
|
self.thresholds[category, label] = thresholds[k]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return {"classifier": clf,
|
|
|
|
|
|
|
|
"threshold": thresholds[k]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
items = [(category, label)
|
|
|
|
|
|
|
|
for category in features.keys()
|
|
|
|
|
|
|
|
for label in [0, 1]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if n_jobs == 1:
|
|
|
|
|
|
|
|
results = list(map(_fit, tqdm(items, desc="Fit (primal)")))
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
results = p_map(_fit, items, num_cpus=n_jobs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (idx, (category, label)) in enumerate(items):
|
|
|
|
self.classifiers[category, label] = clf
|
|
|
|
self.thresholds[category, label] = results[idx]["threshold"]
|
|
|
|
|
|
|
|
self.classifiers[category, label] = results[idx]["classifier"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def predict(self, instance):
|
|
|
|
def predict(self, instance):
|
|
|
|
x_test = VariableFeaturesExtractor().extract([instance])
|
|
|
|
|
|
|
|
solution = {}
|
|
|
|
solution = {}
|
|
|
|
|
|
|
|
x_test = VariableFeaturesExtractor().extract([instance])
|
|
|
|
var_split = Extractor.split_variables(instance)
|
|
|
|
var_split = Extractor.split_variables(instance)
|
|
|
|
for category in var_split.keys():
|
|
|
|
for category in var_split.keys():
|
|
|
|
for (i, (var, index)) in enumerate(var_split[category]):
|
|
|
|
for (i, (var, index)) in enumerate(var_split[category]):
|
|
|
|
if var not in solution.keys():
|
|
|
|
if var not in solution.keys():
|
|
|
|
solution[var] = {}
|
|
|
|
solution[var] = {}
|
|
|
|
solution[var][index] = None
|
|
|
|
solution[var][index] = None
|
|
|
|
for label in [0, 1]:
|
|
|
|
for label in [0, 1]:
|
|
|
|
if (category, label) not in self.classifiers.keys():
|
|
|
|
if (category, label) not in self.classifiers.keys():
|
|
|
|
continue
|
|
|
|
continue
|
|
|
|
ws = self.classifiers[category, label].predict_proba(x_test[category])
|
|
|
|
clf = self.classifiers[category, label]
|
|
|
|
logger.debug("%s[%s] ws=%.6f threshold=%.6f" %
|
|
|
|
if isinstance(clf, float):
|
|
|
|
(var, index, ws[i, 1], self.thresholds[category, label]))
|
|
|
|
ws = np.array([[1-clf, clf]
|
|
|
|
if ws[i, 1] >= self.thresholds[category, label]:
|
|
|
|
for _ in range(len(var_split[category]))])
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
ws = clf.predict_proba(x_test[category])
|
|
|
|
|
|
|
|
for (i, (var, index)) in enumerate(var_split[category]):
|
|
|
|
|
|
|
|
if ws[i, 1] >= self.threshold:
|
|
|
|
solution[var][index] = label
|
|
|
|
solution[var][index] = label
|
|
|
|
return solution
|
|
|
|
return solution
|
|
|
|
|
|
|
|
|
|
|
|