mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Update PrimalSolutionComponent
This commit is contained in:
@@ -266,6 +266,13 @@ class Component(EnforceOverrides):
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
return {}
|
||||
|
||||
def sample_evaluate(
|
||||
self,
|
||||
instance: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
return {}
|
||||
|
||||
def sample_xy(
|
||||
self,
|
||||
instance: Optional[Instance],
|
||||
|
||||
@@ -61,14 +61,13 @@ class PrimalSolutionComponent(Component):
|
||||
self.classifier_prototype = classifier
|
||||
|
||||
@overrides
|
||||
def before_solve_mip_old(
|
||||
def before_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
instance: Instance,
|
||||
model: Any,
|
||||
stats: LearningSolveStats,
|
||||
features: Features,
|
||||
training_data: TrainingSample,
|
||||
sample: Sample,
|
||||
) -> None:
|
||||
logger.info("Predicting primal solution...")
|
||||
|
||||
@@ -78,7 +77,7 @@ class PrimalSolutionComponent(Component):
|
||||
return
|
||||
|
||||
# Predict solution and provide it to the solver
|
||||
solution = self.sample_predict(instance, training_data)
|
||||
solution = self.sample_predict(sample)
|
||||
assert solver.internal_solver is not None
|
||||
if self.mode == "heuristic":
|
||||
solver.internal_solver.fix(solution)
|
||||
@@ -103,15 +102,12 @@ class PrimalSolutionComponent(Component):
|
||||
f"one: {stats['Primal: One']}"
|
||||
)
|
||||
|
||||
def sample_predict(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Solution:
|
||||
assert instance.features.variables is not None
|
||||
def sample_predict(self, sample: Sample) -> Solution:
|
||||
assert sample.after_load is not None
|
||||
assert sample.after_load.variables is not None
|
||||
|
||||
# Compute y_pred
|
||||
x, _ = self.sample_xy_old(instance, sample)
|
||||
x, _ = self.sample_xy(None, sample)
|
||||
y_pred = {}
|
||||
for category in x.keys():
|
||||
assert category in self.classifiers, (
|
||||
@@ -129,9 +125,9 @@ class PrimalSolutionComponent(Component):
|
||||
).T
|
||||
|
||||
# Convert y_pred into solution
|
||||
solution: Solution = {v: None for v in instance.features.variables.keys()}
|
||||
solution: Solution = {v: None for v in sample.after_load.variables.keys()}
|
||||
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
||||
for (var_name, var_features) in instance.features.variables.items():
|
||||
for (var_name, var_features) in sample.after_load.variables.items():
|
||||
category = var_features.category
|
||||
if category not in category_offset:
|
||||
continue
|
||||
@@ -144,42 +140,6 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
return solution
|
||||
|
||||
@overrides
|
||||
def sample_xy_old(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict[Category, List[List[float]]], Dict[Category, List[List[float]]]]:
|
||||
assert instance.features.variables is not None
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
for (var_name, var_features) in instance.features.variables.items():
|
||||
category = var_features.category
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x.keys():
|
||||
x[category] = []
|
||||
y[category] = []
|
||||
f: List[float] = []
|
||||
assert var_features.user_features is not None
|
||||
f += var_features.user_features
|
||||
if sample.lp_solution is not None:
|
||||
lp_value = sample.lp_solution[var_name]
|
||||
if lp_value is not None:
|
||||
f += [lp_value]
|
||||
x[category] += [f]
|
||||
if sample.solution is not None:
|
||||
opt_value = sample.solution[var_name]
|
||||
assert opt_value is not None
|
||||
assert 0.0 - 1e-5 <= opt_value <= 1.0 + 1e-5, (
|
||||
f"Variable {var_name} has non-binary value {opt_value} in the "
|
||||
"optimal solution. Predicting values of non-binary "
|
||||
"variables is not currently supported. Please set its "
|
||||
"category to None."
|
||||
)
|
||||
y[category] += [[opt_value < 0.5, opt_value >= 0.5]]
|
||||
return x, y
|
||||
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
@@ -226,18 +186,21 @@ class PrimalSolutionComponent(Component):
|
||||
return x, y
|
||||
|
||||
@overrides
|
||||
def sample_evaluate_old(
|
||||
def sample_evaluate(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
_: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
solution_actual = sample.solution
|
||||
assert solution_actual is not None
|
||||
solution_pred = self.sample_predict(instance, sample)
|
||||
assert sample.after_mip is not None
|
||||
assert sample.after_mip.variables is not None
|
||||
|
||||
solution_actual = sample.after_mip.variables
|
||||
solution_pred = self.sample_predict(sample)
|
||||
vars_all, vars_one, vars_zero = set(), set(), set()
|
||||
pred_one_positive, pred_zero_positive = set(), set()
|
||||
for (var_name, value_actual) in solution_actual.items():
|
||||
assert value_actual is not None
|
||||
for (var_name, var) in solution_actual.items():
|
||||
assert var.value is not None
|
||||
value_actual = var.value
|
||||
vars_all.add(var_name)
|
||||
if value_actual > 0.5:
|
||||
vars_one.add(var_name)
|
||||
@@ -279,10 +242,3 @@ class PrimalSolutionComponent(Component):
|
||||
thr.fit(clf, x[category], y[category])
|
||||
self.classifiers[category] = clf
|
||||
self.thresholds[category] = thr
|
||||
|
||||
@overrides
|
||||
def fit(
|
||||
self,
|
||||
training_instances: List[Instance],
|
||||
) -> None:
|
||||
return
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
from typing import cast
|
||||
from unittest.mock import Mock
|
||||
|
||||
import numpy as np
|
||||
@@ -14,15 +13,14 @@ from miplearn.classifiers.threshold import Threshold
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.primal import PrimalSolutionComponent
|
||||
from miplearn.features import (
|
||||
TrainingSample,
|
||||
Variable,
|
||||
Features,
|
||||
Sample,
|
||||
InstanceFeatures,
|
||||
)
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
from miplearn.solvers.tests import assert_equals
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@@ -48,7 +46,7 @@ def sample() -> Sample:
|
||||
after_mip=Features(
|
||||
variables={
|
||||
"x[0]": Variable(value=0.0),
|
||||
"x[1]": Variable(value=0.0),
|
||||
"x[1]": Variable(value=1.0),
|
||||
"x[2]": Variable(value=1.0),
|
||||
"x[3]": Variable(value=0.0),
|
||||
}
|
||||
@@ -89,168 +87,6 @@ def test_xy(sample: Sample) -> None:
|
||||
assert y_actual == y_expected
|
||||
|
||||
|
||||
def test_xy_old() -> None:
|
||||
features = Features(
|
||||
variables={
|
||||
"x[0]": Variable(
|
||||
category="default",
|
||||
user_features=[0.0, 0.0],
|
||||
),
|
||||
"x[1]": Variable(
|
||||
category=None,
|
||||
),
|
||||
"x[2]": Variable(
|
||||
category="default",
|
||||
user_features=[1.0, 0.0],
|
||||
),
|
||||
"x[3]": Variable(
|
||||
category="default",
|
||||
user_features=[1.0, 1.0],
|
||||
),
|
||||
}
|
||||
)
|
||||
instance = Mock(spec=Instance)
|
||||
instance.features = features
|
||||
sample = TrainingSample(
|
||||
solution={
|
||||
"x[0]": 0.0,
|
||||
"x[1]": 1.0,
|
||||
"x[2]": 1.0,
|
||||
"x[3]": 0.0,
|
||||
},
|
||||
lp_solution={
|
||||
"x[0]": 0.1,
|
||||
"x[1]": 0.1,
|
||||
"x[2]": 0.1,
|
||||
"x[3]": 0.1,
|
||||
},
|
||||
)
|
||||
x_expected = {
|
||||
"default": [
|
||||
[0.0, 0.0, 0.1],
|
||||
[1.0, 0.0, 0.1],
|
||||
[1.0, 1.0, 0.1],
|
||||
]
|
||||
}
|
||||
y_expected = {
|
||||
"default": [
|
||||
[True, False],
|
||||
[False, True],
|
||||
[True, False],
|
||||
]
|
||||
}
|
||||
xy = PrimalSolutionComponent().sample_xy_old(instance, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
assert y_actual == y_expected
|
||||
|
||||
|
||||
def test_xy_without_lp_solution_old() -> None:
|
||||
features = Features(
|
||||
variables={
|
||||
"x[0]": Variable(
|
||||
category="default",
|
||||
user_features=[0.0, 0.0],
|
||||
),
|
||||
"x[1]": Variable(
|
||||
category=None,
|
||||
),
|
||||
"x[2]": Variable(
|
||||
category="default",
|
||||
user_features=[1.0, 0.0],
|
||||
),
|
||||
"x[3]": Variable(
|
||||
category="default",
|
||||
user_features=[1.0, 1.0],
|
||||
),
|
||||
}
|
||||
)
|
||||
instance = Mock(spec=Instance)
|
||||
instance.features = features
|
||||
sample = TrainingSample(
|
||||
solution={
|
||||
"x[0]": 0.0,
|
||||
"x[1]": 1.0,
|
||||
"x[2]": 1.0,
|
||||
"x[3]": 0.0,
|
||||
},
|
||||
)
|
||||
x_expected = {
|
||||
"default": [
|
||||
[0.0, 0.0],
|
||||
[1.0, 0.0],
|
||||
[1.0, 1.0],
|
||||
]
|
||||
}
|
||||
y_expected = {
|
||||
"default": [
|
||||
[True, False],
|
||||
[False, True],
|
||||
[True, False],
|
||||
]
|
||||
}
|
||||
xy = PrimalSolutionComponent().sample_xy_old(instance, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
assert y_actual == y_expected
|
||||
|
||||
|
||||
def test_predict_old() -> None:
|
||||
clf = Mock(spec=Classifier)
|
||||
clf.predict_proba = Mock(
|
||||
return_value=np.array(
|
||||
[
|
||||
[0.9, 0.1],
|
||||
[0.5, 0.5],
|
||||
[0.1, 0.9],
|
||||
]
|
||||
)
|
||||
)
|
||||
thr = Mock(spec=Threshold)
|
||||
thr.predict = Mock(return_value=[0.75, 0.75])
|
||||
features = Features(
|
||||
variables={
|
||||
"x[0]": Variable(
|
||||
category="default",
|
||||
user_features=[0.0, 0.0],
|
||||
),
|
||||
"x[1]": Variable(
|
||||
category="default",
|
||||
user_features=[0.0, 2.0],
|
||||
),
|
||||
"x[2]": Variable(
|
||||
category="default",
|
||||
user_features=[2.0, 0.0],
|
||||
),
|
||||
}
|
||||
)
|
||||
instance = Mock(spec=Instance)
|
||||
instance.features = features
|
||||
sample = TrainingSample(
|
||||
lp_solution={
|
||||
"x[0]": 0.1,
|
||||
"x[1]": 0.5,
|
||||
"x[2]": 0.9,
|
||||
}
|
||||
)
|
||||
x, _ = PrimalSolutionComponent().sample_xy_old(instance, sample)
|
||||
comp = PrimalSolutionComponent()
|
||||
comp.classifiers = {"default": clf}
|
||||
comp.thresholds = {"default": thr}
|
||||
pred = comp.sample_predict(instance, sample)
|
||||
clf.predict_proba.assert_called_once()
|
||||
assert_array_equal(x["default"], clf.predict_proba.call_args[0][0])
|
||||
thr.predict.assert_called_once()
|
||||
assert_array_equal(x["default"], thr.predict.call_args[0][0])
|
||||
assert pred == {
|
||||
"x[0]": 0.0,
|
||||
"x[1]": None,
|
||||
"x[2]": 1.0,
|
||||
}
|
||||
|
||||
|
||||
def test_fit_xy() -> None:
|
||||
clf = Mock(spec=Classifier)
|
||||
clf.clone = lambda: Mock(spec=Classifier) # type: ignore
|
||||
@@ -295,37 +131,49 @@ def test_usage() -> None:
|
||||
assert stats["mip_lower_bound"] == stats["mip_warm_start_value"]
|
||||
|
||||
|
||||
def test_evaluate_old() -> None:
|
||||
def test_evaluate(sample: Sample) -> None:
|
||||
comp = PrimalSolutionComponent()
|
||||
comp.sample_predict = lambda _, __: { # type: ignore
|
||||
comp.sample_predict = lambda _: { # type: ignore
|
||||
"x[0]": 1.0,
|
||||
"x[1]": 0.0,
|
||||
"x[1]": 1.0,
|
||||
"x[2]": 0.0,
|
||||
"x[3]": None,
|
||||
"x[4]": 1.0,
|
||||
}
|
||||
features: Features = Features(
|
||||
variables={
|
||||
"x[0]": Variable(),
|
||||
"x[1]": Variable(),
|
||||
"x[2]": Variable(),
|
||||
"x[3]": Variable(),
|
||||
"x[4]": Variable(),
|
||||
}
|
||||
ev = comp.sample_evaluate(None, sample)
|
||||
assert_equals(
|
||||
ev,
|
||||
{
|
||||
0: classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=2),
|
||||
1: classifier_evaluation_dict(tp=1, fp=1, tn=1, fn=1),
|
||||
},
|
||||
)
|
||||
instance = Mock(spec=Instance)
|
||||
instance.features = features
|
||||
sample: TrainingSample = TrainingSample(
|
||||
solution={
|
||||
"x[0]": 1.0,
|
||||
"x[1]": 1.0,
|
||||
"x[2]": 0.0,
|
||||
"x[3]": 1.0,
|
||||
"x[4]": 1.0,
|
||||
}
|
||||
|
||||
|
||||
def test_predict(sample: Sample) -> None:
|
||||
clf = Mock(spec=Classifier)
|
||||
clf.predict_proba = Mock(
|
||||
return_value=np.array(
|
||||
[
|
||||
[0.9, 0.1],
|
||||
[0.5, 0.5],
|
||||
[0.1, 0.9],
|
||||
]
|
||||
)
|
||||
)
|
||||
ev = comp.sample_evaluate_old(instance, sample)
|
||||
assert ev == {
|
||||
0: classifier_evaluation_dict(tp=1, fp=1, tn=3, fn=0),
|
||||
1: classifier_evaluation_dict(tp=2, fp=0, tn=1, fn=2),
|
||||
thr = Mock(spec=Threshold)
|
||||
thr.predict = Mock(return_value=[0.75, 0.75])
|
||||
comp = PrimalSolutionComponent()
|
||||
x, _ = comp.sample_xy(None, sample)
|
||||
comp.classifiers = {"default": clf}
|
||||
comp.thresholds = {"default": thr}
|
||||
pred = comp.sample_predict(sample)
|
||||
clf.predict_proba.assert_called_once()
|
||||
thr.predict.assert_called_once()
|
||||
assert_array_equal(x["default"], clf.predict_proba.call_args[0][0])
|
||||
assert_array_equal(x["default"], thr.predict.call_args[0][0])
|
||||
assert pred == {
|
||||
"x[0]": 0.0,
|
||||
"x[1]": None,
|
||||
"x[2]": None,
|
||||
"x[3]": 1.0,
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user