Update PrimalSolutionComponent

This commit is contained in:
2021-04-13 07:23:07 -05:00
parent d7aa31f3eb
commit a9dcdb8e4e
3 changed files with 67 additions and 256 deletions

View File

@@ -266,6 +266,13 @@ class Component(EnforceOverrides):
) -> Dict[Hashable, Dict[str, float]]:
return {}
def sample_evaluate(
self,
instance: Optional[Instance],
sample: Sample,
) -> Dict[Hashable, Dict[str, float]]:
return {}
def sample_xy(
self,
instance: Optional[Instance],

View File

@@ -61,14 +61,13 @@ class PrimalSolutionComponent(Component):
self.classifier_prototype = classifier
@overrides
def before_solve_mip_old(
def before_solve_mip(
self,
solver: "LearningSolver",
instance: Instance,
model: Any,
stats: LearningSolveStats,
features: Features,
training_data: TrainingSample,
sample: Sample,
) -> None:
logger.info("Predicting primal solution...")
@@ -78,7 +77,7 @@ class PrimalSolutionComponent(Component):
return
# Predict solution and provide it to the solver
solution = self.sample_predict(instance, training_data)
solution = self.sample_predict(sample)
assert solver.internal_solver is not None
if self.mode == "heuristic":
solver.internal_solver.fix(solution)
@@ -103,15 +102,12 @@ class PrimalSolutionComponent(Component):
f"one: {stats['Primal: One']}"
)
def sample_predict(
self,
instance: Instance,
sample: TrainingSample,
) -> Solution:
assert instance.features.variables is not None
def sample_predict(self, sample: Sample) -> Solution:
assert sample.after_load is not None
assert sample.after_load.variables is not None
# Compute y_pred
x, _ = self.sample_xy_old(instance, sample)
x, _ = self.sample_xy(None, sample)
y_pred = {}
for category in x.keys():
assert category in self.classifiers, (
@@ -129,9 +125,9 @@ class PrimalSolutionComponent(Component):
).T
# Convert y_pred into solution
solution: Solution = {v: None for v in instance.features.variables.keys()}
solution: Solution = {v: None for v in sample.after_load.variables.keys()}
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
for (var_name, var_features) in instance.features.variables.items():
for (var_name, var_features) in sample.after_load.variables.items():
category = var_features.category
if category not in category_offset:
continue
@@ -144,42 +140,6 @@ class PrimalSolutionComponent(Component):
return solution
@overrides
def sample_xy_old(
self,
instance: Instance,
sample: TrainingSample,
) -> Tuple[Dict[Category, List[List[float]]], Dict[Category, List[List[float]]]]:
assert instance.features.variables is not None
x: Dict = {}
y: Dict = {}
for (var_name, var_features) in instance.features.variables.items():
category = var_features.category
if category is None:
continue
if category not in x.keys():
x[category] = []
y[category] = []
f: List[float] = []
assert var_features.user_features is not None
f += var_features.user_features
if sample.lp_solution is not None:
lp_value = sample.lp_solution[var_name]
if lp_value is not None:
f += [lp_value]
x[category] += [f]
if sample.solution is not None:
opt_value = sample.solution[var_name]
assert opt_value is not None
assert 0.0 - 1e-5 <= opt_value <= 1.0 + 1e-5, (
f"Variable {var_name} has non-binary value {opt_value} in the "
"optimal solution. Predicting values of non-binary "
"variables is not currently supported. Please set its "
"category to None."
)
y[category] += [[opt_value < 0.5, opt_value >= 0.5]]
return x, y
@overrides
def sample_xy(
self,
@@ -226,18 +186,21 @@ class PrimalSolutionComponent(Component):
return x, y
@overrides
def sample_evaluate_old(
def sample_evaluate(
self,
instance: Instance,
sample: TrainingSample,
_: Optional[Instance],
sample: Sample,
) -> Dict[Hashable, Dict[str, float]]:
solution_actual = sample.solution
assert solution_actual is not None
solution_pred = self.sample_predict(instance, sample)
assert sample.after_mip is not None
assert sample.after_mip.variables is not None
solution_actual = sample.after_mip.variables
solution_pred = self.sample_predict(sample)
vars_all, vars_one, vars_zero = set(), set(), set()
pred_one_positive, pred_zero_positive = set(), set()
for (var_name, value_actual) in solution_actual.items():
assert value_actual is not None
for (var_name, var) in solution_actual.items():
assert var.value is not None
value_actual = var.value
vars_all.add(var_name)
if value_actual > 0.5:
vars_one.add(var_name)
@@ -279,10 +242,3 @@ class PrimalSolutionComponent(Component):
thr.fit(clf, x[category], y[category])
self.classifiers[category] = clf
self.thresholds[category] = thr
@overrides
def fit(
self,
training_instances: List[Instance],
) -> None:
return