mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Update PrimalSolutionComponent
This commit is contained in:
@@ -266,6 +266,13 @@ class Component(EnforceOverrides):
|
|||||||
) -> Dict[Hashable, Dict[str, float]]:
|
) -> Dict[Hashable, Dict[str, float]]:
|
||||||
return {}
|
return {}
|
||||||
|
|
||||||
|
def sample_evaluate(
|
||||||
|
self,
|
||||||
|
instance: Optional[Instance],
|
||||||
|
sample: Sample,
|
||||||
|
) -> Dict[Hashable, Dict[str, float]]:
|
||||||
|
return {}
|
||||||
|
|
||||||
def sample_xy(
|
def sample_xy(
|
||||||
self,
|
self,
|
||||||
instance: Optional[Instance],
|
instance: Optional[Instance],
|
||||||
|
|||||||
@@ -61,14 +61,13 @@ class PrimalSolutionComponent(Component):
|
|||||||
self.classifier_prototype = classifier
|
self.classifier_prototype = classifier
|
||||||
|
|
||||||
@overrides
|
@overrides
|
||||||
def before_solve_mip_old(
|
def before_solve_mip(
|
||||||
self,
|
self,
|
||||||
solver: "LearningSolver",
|
solver: "LearningSolver",
|
||||||
instance: Instance,
|
instance: Instance,
|
||||||
model: Any,
|
model: Any,
|
||||||
stats: LearningSolveStats,
|
stats: LearningSolveStats,
|
||||||
features: Features,
|
sample: Sample,
|
||||||
training_data: TrainingSample,
|
|
||||||
) -> None:
|
) -> None:
|
||||||
logger.info("Predicting primal solution...")
|
logger.info("Predicting primal solution...")
|
||||||
|
|
||||||
@@ -78,7 +77,7 @@ class PrimalSolutionComponent(Component):
|
|||||||
return
|
return
|
||||||
|
|
||||||
# Predict solution and provide it to the solver
|
# Predict solution and provide it to the solver
|
||||||
solution = self.sample_predict(instance, training_data)
|
solution = self.sample_predict(sample)
|
||||||
assert solver.internal_solver is not None
|
assert solver.internal_solver is not None
|
||||||
if self.mode == "heuristic":
|
if self.mode == "heuristic":
|
||||||
solver.internal_solver.fix(solution)
|
solver.internal_solver.fix(solution)
|
||||||
@@ -103,15 +102,12 @@ class PrimalSolutionComponent(Component):
|
|||||||
f"one: {stats['Primal: One']}"
|
f"one: {stats['Primal: One']}"
|
||||||
)
|
)
|
||||||
|
|
||||||
def sample_predict(
|
def sample_predict(self, sample: Sample) -> Solution:
|
||||||
self,
|
assert sample.after_load is not None
|
||||||
instance: Instance,
|
assert sample.after_load.variables is not None
|
||||||
sample: TrainingSample,
|
|
||||||
) -> Solution:
|
|
||||||
assert instance.features.variables is not None
|
|
||||||
|
|
||||||
# Compute y_pred
|
# Compute y_pred
|
||||||
x, _ = self.sample_xy_old(instance, sample)
|
x, _ = self.sample_xy(None, sample)
|
||||||
y_pred = {}
|
y_pred = {}
|
||||||
for category in x.keys():
|
for category in x.keys():
|
||||||
assert category in self.classifiers, (
|
assert category in self.classifiers, (
|
||||||
@@ -129,9 +125,9 @@ class PrimalSolutionComponent(Component):
|
|||||||
).T
|
).T
|
||||||
|
|
||||||
# Convert y_pred into solution
|
# Convert y_pred into solution
|
||||||
solution: Solution = {v: None for v in instance.features.variables.keys()}
|
solution: Solution = {v: None for v in sample.after_load.variables.keys()}
|
||||||
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
||||||
for (var_name, var_features) in instance.features.variables.items():
|
for (var_name, var_features) in sample.after_load.variables.items():
|
||||||
category = var_features.category
|
category = var_features.category
|
||||||
if category not in category_offset:
|
if category not in category_offset:
|
||||||
continue
|
continue
|
||||||
@@ -144,42 +140,6 @@ class PrimalSolutionComponent(Component):
|
|||||||
|
|
||||||
return solution
|
return solution
|
||||||
|
|
||||||
@overrides
|
|
||||||
def sample_xy_old(
|
|
||||||
self,
|
|
||||||
instance: Instance,
|
|
||||||
sample: TrainingSample,
|
|
||||||
) -> Tuple[Dict[Category, List[List[float]]], Dict[Category, List[List[float]]]]:
|
|
||||||
assert instance.features.variables is not None
|
|
||||||
x: Dict = {}
|
|
||||||
y: Dict = {}
|
|
||||||
for (var_name, var_features) in instance.features.variables.items():
|
|
||||||
category = var_features.category
|
|
||||||
if category is None:
|
|
||||||
continue
|
|
||||||
if category not in x.keys():
|
|
||||||
x[category] = []
|
|
||||||
y[category] = []
|
|
||||||
f: List[float] = []
|
|
||||||
assert var_features.user_features is not None
|
|
||||||
f += var_features.user_features
|
|
||||||
if sample.lp_solution is not None:
|
|
||||||
lp_value = sample.lp_solution[var_name]
|
|
||||||
if lp_value is not None:
|
|
||||||
f += [lp_value]
|
|
||||||
x[category] += [f]
|
|
||||||
if sample.solution is not None:
|
|
||||||
opt_value = sample.solution[var_name]
|
|
||||||
assert opt_value is not None
|
|
||||||
assert 0.0 - 1e-5 <= opt_value <= 1.0 + 1e-5, (
|
|
||||||
f"Variable {var_name} has non-binary value {opt_value} in the "
|
|
||||||
"optimal solution. Predicting values of non-binary "
|
|
||||||
"variables is not currently supported. Please set its "
|
|
||||||
"category to None."
|
|
||||||
)
|
|
||||||
y[category] += [[opt_value < 0.5, opt_value >= 0.5]]
|
|
||||||
return x, y
|
|
||||||
|
|
||||||
@overrides
|
@overrides
|
||||||
def sample_xy(
|
def sample_xy(
|
||||||
self,
|
self,
|
||||||
@@ -226,18 +186,21 @@ class PrimalSolutionComponent(Component):
|
|||||||
return x, y
|
return x, y
|
||||||
|
|
||||||
@overrides
|
@overrides
|
||||||
def sample_evaluate_old(
|
def sample_evaluate(
|
||||||
self,
|
self,
|
||||||
instance: Instance,
|
_: Optional[Instance],
|
||||||
sample: TrainingSample,
|
sample: Sample,
|
||||||
) -> Dict[Hashable, Dict[str, float]]:
|
) -> Dict[Hashable, Dict[str, float]]:
|
||||||
solution_actual = sample.solution
|
assert sample.after_mip is not None
|
||||||
assert solution_actual is not None
|
assert sample.after_mip.variables is not None
|
||||||
solution_pred = self.sample_predict(instance, sample)
|
|
||||||
|
solution_actual = sample.after_mip.variables
|
||||||
|
solution_pred = self.sample_predict(sample)
|
||||||
vars_all, vars_one, vars_zero = set(), set(), set()
|
vars_all, vars_one, vars_zero = set(), set(), set()
|
||||||
pred_one_positive, pred_zero_positive = set(), set()
|
pred_one_positive, pred_zero_positive = set(), set()
|
||||||
for (var_name, value_actual) in solution_actual.items():
|
for (var_name, var) in solution_actual.items():
|
||||||
assert value_actual is not None
|
assert var.value is not None
|
||||||
|
value_actual = var.value
|
||||||
vars_all.add(var_name)
|
vars_all.add(var_name)
|
||||||
if value_actual > 0.5:
|
if value_actual > 0.5:
|
||||||
vars_one.add(var_name)
|
vars_one.add(var_name)
|
||||||
@@ -279,10 +242,3 @@ class PrimalSolutionComponent(Component):
|
|||||||
thr.fit(clf, x[category], y[category])
|
thr.fit(clf, x[category], y[category])
|
||||||
self.classifiers[category] = clf
|
self.classifiers[category] = clf
|
||||||
self.thresholds[category] = thr
|
self.thresholds[category] = thr
|
||||||
|
|
||||||
@overrides
|
|
||||||
def fit(
|
|
||||||
self,
|
|
||||||
training_instances: List[Instance],
|
|
||||||
) -> None:
|
|
||||||
return
|
|
||||||
|
|||||||
@@ -1,7 +1,6 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
from typing import cast
|
|
||||||
from unittest.mock import Mock
|
from unittest.mock import Mock
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -14,15 +13,14 @@ from miplearn.classifiers.threshold import Threshold
|
|||||||
from miplearn.components import classifier_evaluation_dict
|
from miplearn.components import classifier_evaluation_dict
|
||||||
from miplearn.components.primal import PrimalSolutionComponent
|
from miplearn.components.primal import PrimalSolutionComponent
|
||||||
from miplearn.features import (
|
from miplearn.features import (
|
||||||
TrainingSample,
|
|
||||||
Variable,
|
Variable,
|
||||||
Features,
|
Features,
|
||||||
Sample,
|
Sample,
|
||||||
InstanceFeatures,
|
InstanceFeatures,
|
||||||
)
|
)
|
||||||
from miplearn.instance.base import Instance
|
|
||||||
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
||||||
from miplearn.solvers.learning import LearningSolver
|
from miplearn.solvers.learning import LearningSolver
|
||||||
|
from miplearn.solvers.tests import assert_equals
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
@@ -48,7 +46,7 @@ def sample() -> Sample:
|
|||||||
after_mip=Features(
|
after_mip=Features(
|
||||||
variables={
|
variables={
|
||||||
"x[0]": Variable(value=0.0),
|
"x[0]": Variable(value=0.0),
|
||||||
"x[1]": Variable(value=0.0),
|
"x[1]": Variable(value=1.0),
|
||||||
"x[2]": Variable(value=1.0),
|
"x[2]": Variable(value=1.0),
|
||||||
"x[3]": Variable(value=0.0),
|
"x[3]": Variable(value=0.0),
|
||||||
}
|
}
|
||||||
@@ -89,168 +87,6 @@ def test_xy(sample: Sample) -> None:
|
|||||||
assert y_actual == y_expected
|
assert y_actual == y_expected
|
||||||
|
|
||||||
|
|
||||||
def test_xy_old() -> None:
|
|
||||||
features = Features(
|
|
||||||
variables={
|
|
||||||
"x[0]": Variable(
|
|
||||||
category="default",
|
|
||||||
user_features=[0.0, 0.0],
|
|
||||||
),
|
|
||||||
"x[1]": Variable(
|
|
||||||
category=None,
|
|
||||||
),
|
|
||||||
"x[2]": Variable(
|
|
||||||
category="default",
|
|
||||||
user_features=[1.0, 0.0],
|
|
||||||
),
|
|
||||||
"x[3]": Variable(
|
|
||||||
category="default",
|
|
||||||
user_features=[1.0, 1.0],
|
|
||||||
),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
instance = Mock(spec=Instance)
|
|
||||||
instance.features = features
|
|
||||||
sample = TrainingSample(
|
|
||||||
solution={
|
|
||||||
"x[0]": 0.0,
|
|
||||||
"x[1]": 1.0,
|
|
||||||
"x[2]": 1.0,
|
|
||||||
"x[3]": 0.0,
|
|
||||||
},
|
|
||||||
lp_solution={
|
|
||||||
"x[0]": 0.1,
|
|
||||||
"x[1]": 0.1,
|
|
||||||
"x[2]": 0.1,
|
|
||||||
"x[3]": 0.1,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
x_expected = {
|
|
||||||
"default": [
|
|
||||||
[0.0, 0.0, 0.1],
|
|
||||||
[1.0, 0.0, 0.1],
|
|
||||||
[1.0, 1.0, 0.1],
|
|
||||||
]
|
|
||||||
}
|
|
||||||
y_expected = {
|
|
||||||
"default": [
|
|
||||||
[True, False],
|
|
||||||
[False, True],
|
|
||||||
[True, False],
|
|
||||||
]
|
|
||||||
}
|
|
||||||
xy = PrimalSolutionComponent().sample_xy_old(instance, sample)
|
|
||||||
assert xy is not None
|
|
||||||
x_actual, y_actual = xy
|
|
||||||
assert x_actual == x_expected
|
|
||||||
assert y_actual == y_expected
|
|
||||||
|
|
||||||
|
|
||||||
def test_xy_without_lp_solution_old() -> None:
|
|
||||||
features = Features(
|
|
||||||
variables={
|
|
||||||
"x[0]": Variable(
|
|
||||||
category="default",
|
|
||||||
user_features=[0.0, 0.0],
|
|
||||||
),
|
|
||||||
"x[1]": Variable(
|
|
||||||
category=None,
|
|
||||||
),
|
|
||||||
"x[2]": Variable(
|
|
||||||
category="default",
|
|
||||||
user_features=[1.0, 0.0],
|
|
||||||
),
|
|
||||||
"x[3]": Variable(
|
|
||||||
category="default",
|
|
||||||
user_features=[1.0, 1.0],
|
|
||||||
),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
instance = Mock(spec=Instance)
|
|
||||||
instance.features = features
|
|
||||||
sample = TrainingSample(
|
|
||||||
solution={
|
|
||||||
"x[0]": 0.0,
|
|
||||||
"x[1]": 1.0,
|
|
||||||
"x[2]": 1.0,
|
|
||||||
"x[3]": 0.0,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
x_expected = {
|
|
||||||
"default": [
|
|
||||||
[0.0, 0.0],
|
|
||||||
[1.0, 0.0],
|
|
||||||
[1.0, 1.0],
|
|
||||||
]
|
|
||||||
}
|
|
||||||
y_expected = {
|
|
||||||
"default": [
|
|
||||||
[True, False],
|
|
||||||
[False, True],
|
|
||||||
[True, False],
|
|
||||||
]
|
|
||||||
}
|
|
||||||
xy = PrimalSolutionComponent().sample_xy_old(instance, sample)
|
|
||||||
assert xy is not None
|
|
||||||
x_actual, y_actual = xy
|
|
||||||
assert x_actual == x_expected
|
|
||||||
assert y_actual == y_expected
|
|
||||||
|
|
||||||
|
|
||||||
def test_predict_old() -> None:
|
|
||||||
clf = Mock(spec=Classifier)
|
|
||||||
clf.predict_proba = Mock(
|
|
||||||
return_value=np.array(
|
|
||||||
[
|
|
||||||
[0.9, 0.1],
|
|
||||||
[0.5, 0.5],
|
|
||||||
[0.1, 0.9],
|
|
||||||
]
|
|
||||||
)
|
|
||||||
)
|
|
||||||
thr = Mock(spec=Threshold)
|
|
||||||
thr.predict = Mock(return_value=[0.75, 0.75])
|
|
||||||
features = Features(
|
|
||||||
variables={
|
|
||||||
"x[0]": Variable(
|
|
||||||
category="default",
|
|
||||||
user_features=[0.0, 0.0],
|
|
||||||
),
|
|
||||||
"x[1]": Variable(
|
|
||||||
category="default",
|
|
||||||
user_features=[0.0, 2.0],
|
|
||||||
),
|
|
||||||
"x[2]": Variable(
|
|
||||||
category="default",
|
|
||||||
user_features=[2.0, 0.0],
|
|
||||||
),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
instance = Mock(spec=Instance)
|
|
||||||
instance.features = features
|
|
||||||
sample = TrainingSample(
|
|
||||||
lp_solution={
|
|
||||||
"x[0]": 0.1,
|
|
||||||
"x[1]": 0.5,
|
|
||||||
"x[2]": 0.9,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
x, _ = PrimalSolutionComponent().sample_xy_old(instance, sample)
|
|
||||||
comp = PrimalSolutionComponent()
|
|
||||||
comp.classifiers = {"default": clf}
|
|
||||||
comp.thresholds = {"default": thr}
|
|
||||||
pred = comp.sample_predict(instance, sample)
|
|
||||||
clf.predict_proba.assert_called_once()
|
|
||||||
assert_array_equal(x["default"], clf.predict_proba.call_args[0][0])
|
|
||||||
thr.predict.assert_called_once()
|
|
||||||
assert_array_equal(x["default"], thr.predict.call_args[0][0])
|
|
||||||
assert pred == {
|
|
||||||
"x[0]": 0.0,
|
|
||||||
"x[1]": None,
|
|
||||||
"x[2]": 1.0,
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def test_fit_xy() -> None:
|
def test_fit_xy() -> None:
|
||||||
clf = Mock(spec=Classifier)
|
clf = Mock(spec=Classifier)
|
||||||
clf.clone = lambda: Mock(spec=Classifier) # type: ignore
|
clf.clone = lambda: Mock(spec=Classifier) # type: ignore
|
||||||
@@ -295,37 +131,49 @@ def test_usage() -> None:
|
|||||||
assert stats["mip_lower_bound"] == stats["mip_warm_start_value"]
|
assert stats["mip_lower_bound"] == stats["mip_warm_start_value"]
|
||||||
|
|
||||||
|
|
||||||
def test_evaluate_old() -> None:
|
def test_evaluate(sample: Sample) -> None:
|
||||||
comp = PrimalSolutionComponent()
|
comp = PrimalSolutionComponent()
|
||||||
comp.sample_predict = lambda _, __: { # type: ignore
|
comp.sample_predict = lambda _: { # type: ignore
|
||||||
"x[0]": 1.0,
|
"x[0]": 1.0,
|
||||||
"x[1]": 0.0,
|
"x[1]": 1.0,
|
||||||
"x[2]": 0.0,
|
"x[2]": 0.0,
|
||||||
"x[3]": None,
|
"x[3]": None,
|
||||||
"x[4]": 1.0,
|
|
||||||
}
|
}
|
||||||
features: Features = Features(
|
ev = comp.sample_evaluate(None, sample)
|
||||||
variables={
|
assert_equals(
|
||||||
"x[0]": Variable(),
|
ev,
|
||||||
"x[1]": Variable(),
|
{
|
||||||
"x[2]": Variable(),
|
0: classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=2),
|
||||||
"x[3]": Variable(),
|
1: classifier_evaluation_dict(tp=1, fp=1, tn=1, fn=1),
|
||||||
"x[4]": Variable(),
|
},
|
||||||
}
|
|
||||||
)
|
)
|
||||||
instance = Mock(spec=Instance)
|
|
||||||
instance.features = features
|
|
||||||
sample: TrainingSample = TrainingSample(
|
def test_predict(sample: Sample) -> None:
|
||||||
solution={
|
clf = Mock(spec=Classifier)
|
||||||
"x[0]": 1.0,
|
clf.predict_proba = Mock(
|
||||||
"x[1]": 1.0,
|
return_value=np.array(
|
||||||
"x[2]": 0.0,
|
[
|
||||||
"x[3]": 1.0,
|
[0.9, 0.1],
|
||||||
"x[4]": 1.0,
|
[0.5, 0.5],
|
||||||
}
|
[0.1, 0.9],
|
||||||
|
]
|
||||||
|
)
|
||||||
)
|
)
|
||||||
ev = comp.sample_evaluate_old(instance, sample)
|
thr = Mock(spec=Threshold)
|
||||||
assert ev == {
|
thr.predict = Mock(return_value=[0.75, 0.75])
|
||||||
0: classifier_evaluation_dict(tp=1, fp=1, tn=3, fn=0),
|
comp = PrimalSolutionComponent()
|
||||||
1: classifier_evaluation_dict(tp=2, fp=0, tn=1, fn=2),
|
x, _ = comp.sample_xy(None, sample)
|
||||||
|
comp.classifiers = {"default": clf}
|
||||||
|
comp.thresholds = {"default": thr}
|
||||||
|
pred = comp.sample_predict(sample)
|
||||||
|
clf.predict_proba.assert_called_once()
|
||||||
|
thr.predict.assert_called_once()
|
||||||
|
assert_array_equal(x["default"], clf.predict_proba.call_args[0][0])
|
||||||
|
assert_array_equal(x["default"], thr.predict.call_args[0][0])
|
||||||
|
assert pred == {
|
||||||
|
"x[0]": 0.0,
|
||||||
|
"x[1]": None,
|
||||||
|
"x[2]": None,
|
||||||
|
"x[3]": 1.0,
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user