Remove obsolete extractor classes

master
Alinson S. Xavier 5 years ago
parent 9e7eed1dbd
commit b0bf42e69d
No known key found for this signature in database
GPG Key ID: DCA0DAD4D2F58624

@ -22,7 +22,6 @@ from .components.primal import PrimalSolutionComponent
from .components.steps.convert_tight import ConvertTightIneqsIntoEqsStep from .components.steps.convert_tight import ConvertTightIneqsIntoEqsStep
from .components.steps.drop_redundant import DropRedundantInequalitiesStep from .components.steps.drop_redundant import DropRedundantInequalitiesStep
from .components.steps.relax_integrality import RelaxIntegralityStep from .components.steps.relax_integrality import RelaxIntegralityStep
from .extractors import InstanceFeaturesExtractor
from .instance import ( from .instance import (
Instance, Instance,
PickleGzInstance, PickleGzInstance,

@ -1,45 +0,0 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
from abc import ABC, abstractmethod
import numpy as np
logger = logging.getLogger(__name__)
class Extractor(ABC):
@abstractmethod
def extract(self, instances):
pass
@staticmethod
def split_variables(instance):
result = {}
lp_solution = instance.training_data[0].lp_solution
for var_name in lp_solution:
for index in lp_solution[var_name]:
category = instance.get_variable_category(var_name, index)
if category is None:
continue
if category not in result:
result[category] = []
result[category] += [(var_name, index)]
return result
class InstanceFeaturesExtractor(Extractor):
def extract(self, instances):
return np.vstack(
[
np.hstack(
[
instance.get_instance_features(),
instance.training_data[0].lp_value,
]
)
for instance in instances
]
)

@ -1,34 +0,0 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from miplearn.extractors import InstanceFeaturesExtractor
from miplearn.problems.knapsack import KnapsackInstance
from miplearn.solvers.learning import LearningSolver
def _get_instances():
instances = [
KnapsackInstance(
weights=[1.0, 2.0, 3.0],
prices=[10.0, 20.0, 30.0],
capacity=2.5,
),
KnapsackInstance(
weights=[3.0, 4.0, 5.0],
prices=[20.0, 30.0, 40.0],
capacity=4.5,
),
]
models = [instance.to_model() for instance in instances]
solver = LearningSolver()
for (i, instance) in enumerate(instances):
solver.solve(instances[i], models[i])
return instances, models
def test_instance_features_extractor():
instances, models = _get_instances()
features = InstanceFeaturesExtractor().extract(instances)
assert features.shape == (2, 3)
Loading…
Cancel
Save