|
|
|
@ -20,27 +20,27 @@ class InternalSolver:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def solve_lp(self, tee=False):
|
|
|
|
|
self.solver.set_instance(self.model)
|
|
|
|
|
|
|
|
|
|
# Relax domain
|
|
|
|
|
from pyomo.core.base.set_types import Reals
|
|
|
|
|
original_domain = {}
|
|
|
|
|
for var in self.model.component_data_objects(Var):
|
|
|
|
|
original_domain[str(var)] = var.domain
|
|
|
|
|
original_domains = []
|
|
|
|
|
for (idx, var) in enumerate(self.model.component_data_objects(Var)):
|
|
|
|
|
original_domains += [var.domain]
|
|
|
|
|
lb, ub = var.bounds
|
|
|
|
|
var.setlb(lb)
|
|
|
|
|
var.setub(ub)
|
|
|
|
|
var.domain = Reals
|
|
|
|
|
self.solver.update_var(var)
|
|
|
|
|
|
|
|
|
|
# Solve LP relaxation
|
|
|
|
|
self.solver.set_instance(self.model)
|
|
|
|
|
results = self.solver.solve(tee=tee)
|
|
|
|
|
|
|
|
|
|
# Restore domains
|
|
|
|
|
for var in self.model.component_data_objects(Var):
|
|
|
|
|
var.domain = original_domain[str(var)]
|
|
|
|
|
for (idx, var) in enumerate(self.model.component_data_objects(Var)):
|
|
|
|
|
var.domain = original_domains[idx]
|
|
|
|
|
self.solver.update_var(var)
|
|
|
|
|
|
|
|
|
|
# Reload original model
|
|
|
|
|
self.solver.set_instance(self.model)
|
|
|
|
|
|
|
|
|
|
return {
|
|
|
|
|
"Optimal value": results["Problem"][0]["Lower bound"],
|
|
|
|
|
}
|
|
|
|
|