mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Update ObjectiveValueComponent
This commit is contained in:
@@ -36,17 +36,16 @@ class ObjectiveValueComponent(Component):
|
||||
self.regressor_prototype = regressor
|
||||
|
||||
@overrides
|
||||
def before_solve_mip_old(
|
||||
def before_solve_mip(
|
||||
self,
|
||||
solver: "LearningSolver",
|
||||
instance: Instance,
|
||||
model: Any,
|
||||
stats: LearningSolveStats,
|
||||
features: Features,
|
||||
training_data: TrainingSample,
|
||||
sample: Sample,
|
||||
) -> None:
|
||||
logger.info("Predicting optimal value...")
|
||||
pred = self.sample_predict_old(instance, training_data)
|
||||
pred = self.sample_predict(sample)
|
||||
for (c, v) in pred.items():
|
||||
logger.info(f"Predicted {c.lower()}: %.6e" % v)
|
||||
stats[f"Objective: Predicted {c.lower()}"] = v # type: ignore
|
||||
@@ -62,13 +61,9 @@ class ObjectiveValueComponent(Component):
|
||||
self.regressors[c] = self.regressor_prototype.clone()
|
||||
self.regressors[c].fit(x[c], y[c])
|
||||
|
||||
def sample_predict_old(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Dict[str, float]:
|
||||
def sample_predict(self, sample: Sample) -> Dict[str, float]:
|
||||
pred: Dict[str, float] = {}
|
||||
x, _ = self.sample_xy_old(instance, sample)
|
||||
x, _ = self.sample_xy(None, sample)
|
||||
for c in ["Upper bound", "Lower bound"]:
|
||||
if c in self.regressors is not None:
|
||||
pred[c] = self.regressors[c].predict(np.array(x[c]))[0, 0]
|
||||
@@ -76,28 +71,6 @@ class ObjectiveValueComponent(Component):
|
||||
logger.info(f"{c} regressor not fitted. Skipping.")
|
||||
return pred
|
||||
|
||||
@overrides
|
||||
def sample_xy_old(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
||||
ifeatures = instance.features.instance
|
||||
assert ifeatures is not None
|
||||
assert ifeatures.user_features is not None
|
||||
x: Dict[Hashable, List[List[float]]] = {}
|
||||
y: Dict[Hashable, List[List[float]]] = {}
|
||||
f = list(ifeatures.user_features)
|
||||
if sample.lp_value is not None:
|
||||
f += [sample.lp_value]
|
||||
x["Upper bound"] = [f]
|
||||
x["Lower bound"] = [f]
|
||||
if sample.lower_bound is not None:
|
||||
y["Lower bound"] = [[sample.lower_bound]]
|
||||
if sample.upper_bound is not None:
|
||||
y["Upper bound"] = [[sample.upper_bound]]
|
||||
return x, y
|
||||
|
||||
@overrides
|
||||
def sample_xy(
|
||||
self,
|
||||
@@ -133,11 +106,14 @@ class ObjectiveValueComponent(Component):
|
||||
return x, y
|
||||
|
||||
@overrides
|
||||
def sample_evaluate_old(
|
||||
def sample_evaluate(
|
||||
self,
|
||||
instance: Instance,
|
||||
sample: TrainingSample,
|
||||
sample: Sample,
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
assert sample.after_mip is not None
|
||||
assert sample.after_mip.mip_solve is not None
|
||||
|
||||
def compare(y_pred: float, y_actual: float) -> Dict[str, float]:
|
||||
err = np.round(abs(y_pred - y_actual), 8)
|
||||
return {
|
||||
@@ -148,16 +124,11 @@ class ObjectiveValueComponent(Component):
|
||||
}
|
||||
|
||||
result: Dict[Hashable, Dict[str, float]] = {}
|
||||
pred = self.sample_predict_old(instance, sample)
|
||||
if sample.upper_bound is not None:
|
||||
result["Upper bound"] = compare(pred["Upper bound"], sample.upper_bound)
|
||||
if sample.lower_bound is not None:
|
||||
result["Lower bound"] = compare(pred["Lower bound"], sample.lower_bound)
|
||||
pred = self.sample_predict(sample)
|
||||
actual_ub = sample.after_mip.mip_solve.mip_upper_bound
|
||||
actual_lb = sample.after_mip.mip_solve.mip_lower_bound
|
||||
if actual_ub is not None:
|
||||
result["Upper bound"] = compare(pred["Upper bound"], actual_ub)
|
||||
if actual_lb is not None:
|
||||
result["Lower bound"] = compare(pred["Lower bound"], actual_lb)
|
||||
return result
|
||||
|
||||
@overrides
|
||||
def fit(
|
||||
self,
|
||||
training_instances: List[Instance],
|
||||
) -> None:
|
||||
return
|
||||
|
||||
Reference in New Issue
Block a user