mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Update ObjectiveValueComponent
This commit is contained in:
@@ -36,17 +36,16 @@ class ObjectiveValueComponent(Component):
|
|||||||
self.regressor_prototype = regressor
|
self.regressor_prototype = regressor
|
||||||
|
|
||||||
@overrides
|
@overrides
|
||||||
def before_solve_mip_old(
|
def before_solve_mip(
|
||||||
self,
|
self,
|
||||||
solver: "LearningSolver",
|
solver: "LearningSolver",
|
||||||
instance: Instance,
|
instance: Instance,
|
||||||
model: Any,
|
model: Any,
|
||||||
stats: LearningSolveStats,
|
stats: LearningSolveStats,
|
||||||
features: Features,
|
sample: Sample,
|
||||||
training_data: TrainingSample,
|
|
||||||
) -> None:
|
) -> None:
|
||||||
logger.info("Predicting optimal value...")
|
logger.info("Predicting optimal value...")
|
||||||
pred = self.sample_predict_old(instance, training_data)
|
pred = self.sample_predict(sample)
|
||||||
for (c, v) in pred.items():
|
for (c, v) in pred.items():
|
||||||
logger.info(f"Predicted {c.lower()}: %.6e" % v)
|
logger.info(f"Predicted {c.lower()}: %.6e" % v)
|
||||||
stats[f"Objective: Predicted {c.lower()}"] = v # type: ignore
|
stats[f"Objective: Predicted {c.lower()}"] = v # type: ignore
|
||||||
@@ -62,13 +61,9 @@ class ObjectiveValueComponent(Component):
|
|||||||
self.regressors[c] = self.regressor_prototype.clone()
|
self.regressors[c] = self.regressor_prototype.clone()
|
||||||
self.regressors[c].fit(x[c], y[c])
|
self.regressors[c].fit(x[c], y[c])
|
||||||
|
|
||||||
def sample_predict_old(
|
def sample_predict(self, sample: Sample) -> Dict[str, float]:
|
||||||
self,
|
|
||||||
instance: Instance,
|
|
||||||
sample: TrainingSample,
|
|
||||||
) -> Dict[str, float]:
|
|
||||||
pred: Dict[str, float] = {}
|
pred: Dict[str, float] = {}
|
||||||
x, _ = self.sample_xy_old(instance, sample)
|
x, _ = self.sample_xy(None, sample)
|
||||||
for c in ["Upper bound", "Lower bound"]:
|
for c in ["Upper bound", "Lower bound"]:
|
||||||
if c in self.regressors is not None:
|
if c in self.regressors is not None:
|
||||||
pred[c] = self.regressors[c].predict(np.array(x[c]))[0, 0]
|
pred[c] = self.regressors[c].predict(np.array(x[c]))[0, 0]
|
||||||
@@ -76,28 +71,6 @@ class ObjectiveValueComponent(Component):
|
|||||||
logger.info(f"{c} regressor not fitted. Skipping.")
|
logger.info(f"{c} regressor not fitted. Skipping.")
|
||||||
return pred
|
return pred
|
||||||
|
|
||||||
@overrides
|
|
||||||
def sample_xy_old(
|
|
||||||
self,
|
|
||||||
instance: Instance,
|
|
||||||
sample: TrainingSample,
|
|
||||||
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
|
||||||
ifeatures = instance.features.instance
|
|
||||||
assert ifeatures is not None
|
|
||||||
assert ifeatures.user_features is not None
|
|
||||||
x: Dict[Hashable, List[List[float]]] = {}
|
|
||||||
y: Dict[Hashable, List[List[float]]] = {}
|
|
||||||
f = list(ifeatures.user_features)
|
|
||||||
if sample.lp_value is not None:
|
|
||||||
f += [sample.lp_value]
|
|
||||||
x["Upper bound"] = [f]
|
|
||||||
x["Lower bound"] = [f]
|
|
||||||
if sample.lower_bound is not None:
|
|
||||||
y["Lower bound"] = [[sample.lower_bound]]
|
|
||||||
if sample.upper_bound is not None:
|
|
||||||
y["Upper bound"] = [[sample.upper_bound]]
|
|
||||||
return x, y
|
|
||||||
|
|
||||||
@overrides
|
@overrides
|
||||||
def sample_xy(
|
def sample_xy(
|
||||||
self,
|
self,
|
||||||
@@ -133,11 +106,14 @@ class ObjectiveValueComponent(Component):
|
|||||||
return x, y
|
return x, y
|
||||||
|
|
||||||
@overrides
|
@overrides
|
||||||
def sample_evaluate_old(
|
def sample_evaluate(
|
||||||
self,
|
self,
|
||||||
instance: Instance,
|
instance: Instance,
|
||||||
sample: TrainingSample,
|
sample: Sample,
|
||||||
) -> Dict[Hashable, Dict[str, float]]:
|
) -> Dict[Hashable, Dict[str, float]]:
|
||||||
|
assert sample.after_mip is not None
|
||||||
|
assert sample.after_mip.mip_solve is not None
|
||||||
|
|
||||||
def compare(y_pred: float, y_actual: float) -> Dict[str, float]:
|
def compare(y_pred: float, y_actual: float) -> Dict[str, float]:
|
||||||
err = np.round(abs(y_pred - y_actual), 8)
|
err = np.round(abs(y_pred - y_actual), 8)
|
||||||
return {
|
return {
|
||||||
@@ -148,16 +124,11 @@ class ObjectiveValueComponent(Component):
|
|||||||
}
|
}
|
||||||
|
|
||||||
result: Dict[Hashable, Dict[str, float]] = {}
|
result: Dict[Hashable, Dict[str, float]] = {}
|
||||||
pred = self.sample_predict_old(instance, sample)
|
pred = self.sample_predict(sample)
|
||||||
if sample.upper_bound is not None:
|
actual_ub = sample.after_mip.mip_solve.mip_upper_bound
|
||||||
result["Upper bound"] = compare(pred["Upper bound"], sample.upper_bound)
|
actual_lb = sample.after_mip.mip_solve.mip_lower_bound
|
||||||
if sample.lower_bound is not None:
|
if actual_ub is not None:
|
||||||
result["Lower bound"] = compare(pred["Lower bound"], sample.lower_bound)
|
result["Upper bound"] = compare(pred["Upper bound"], actual_ub)
|
||||||
|
if actual_lb is not None:
|
||||||
|
result["Lower bound"] = compare(pred["Lower bound"], actual_lb)
|
||||||
return result
|
return result
|
||||||
|
|
||||||
@overrides
|
|
||||||
def fit(
|
|
||||||
self,
|
|
||||||
training_instances: List[Instance],
|
|
||||||
) -> None:
|
|
||||||
return
|
|
||||||
|
|||||||
@@ -10,38 +10,12 @@ from numpy.testing import assert_array_equal
|
|||||||
|
|
||||||
from miplearn.classifiers import Regressor
|
from miplearn.classifiers import Regressor
|
||||||
from miplearn.components.objective import ObjectiveValueComponent
|
from miplearn.components.objective import ObjectiveValueComponent
|
||||||
from miplearn.features import TrainingSample, InstanceFeatures, Features, Sample
|
from miplearn.features import InstanceFeatures, Features, Sample
|
||||||
from miplearn.instance.base import Instance
|
|
||||||
from miplearn.solvers.internal import MIPSolveStats, LPSolveStats
|
from miplearn.solvers.internal import MIPSolveStats, LPSolveStats
|
||||||
from miplearn.solvers.learning import LearningSolver
|
from miplearn.solvers.learning import LearningSolver
|
||||||
from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def instance_old(features_old: Features) -> Instance:
|
|
||||||
instance = Mock(spec=Instance)
|
|
||||||
instance.features = features_old
|
|
||||||
return instance
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def features_old() -> Features:
|
|
||||||
return Features(
|
|
||||||
instance=InstanceFeatures(
|
|
||||||
user_features=[1.0, 2.0],
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def sample_old() -> TrainingSample:
|
|
||||||
return TrainingSample(
|
|
||||||
lower_bound=1.0,
|
|
||||||
upper_bound=2.0,
|
|
||||||
lp_value=3.0,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def sample() -> Sample:
|
def sample() -> Sample:
|
||||||
sample = Sample(
|
sample = Sample(
|
||||||
@@ -63,22 +37,6 @@ def sample() -> Sample:
|
|||||||
return sample
|
return sample
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def sample_without_lp() -> TrainingSample:
|
|
||||||
return TrainingSample(
|
|
||||||
lower_bound=1.0,
|
|
||||||
upper_bound=2.0,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def sample_without_ub_old() -> TrainingSample:
|
|
||||||
return TrainingSample(
|
|
||||||
lower_bound=1.0,
|
|
||||||
lp_value=3.0,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def test_sample_xy(sample: Sample) -> None:
|
def test_sample_xy(sample: Sample) -> None:
|
||||||
x_expected = {
|
x_expected = {
|
||||||
"Lower bound": [[1.0, 2.0, 3.0]],
|
"Lower bound": [[1.0, 2.0, 3.0]],
|
||||||
@@ -95,41 +53,6 @@ def test_sample_xy(sample: Sample) -> None:
|
|||||||
assert y_actual == y_expected
|
assert y_actual == y_expected
|
||||||
|
|
||||||
|
|
||||||
def test_sample_xy_without_lp_old(
|
|
||||||
instance_old: Instance,
|
|
||||||
sample_without_lp: TrainingSample,
|
|
||||||
) -> None:
|
|
||||||
x_expected = {
|
|
||||||
"Lower bound": [[1.0, 2.0]],
|
|
||||||
"Upper bound": [[1.0, 2.0]],
|
|
||||||
}
|
|
||||||
y_expected = {
|
|
||||||
"Lower bound": [[1.0]],
|
|
||||||
"Upper bound": [[2.0]],
|
|
||||||
}
|
|
||||||
xy = ObjectiveValueComponent().sample_xy_old(instance_old, sample_without_lp)
|
|
||||||
assert xy is not None
|
|
||||||
x_actual, y_actual = xy
|
|
||||||
assert x_actual == x_expected
|
|
||||||
assert y_actual == y_expected
|
|
||||||
|
|
||||||
|
|
||||||
def test_sample_xy_without_ub_old(
|
|
||||||
instance_old: Instance,
|
|
||||||
sample_without_ub_old: TrainingSample,
|
|
||||||
) -> None:
|
|
||||||
x_expected = {
|
|
||||||
"Lower bound": [[1.0, 2.0, 3.0]],
|
|
||||||
"Upper bound": [[1.0, 2.0, 3.0]],
|
|
||||||
}
|
|
||||||
y_expected = {"Lower bound": [[1.0]]}
|
|
||||||
xy = ObjectiveValueComponent().sample_xy_old(instance_old, sample_without_ub_old)
|
|
||||||
assert xy is not None
|
|
||||||
x_actual, y_actual = xy
|
|
||||||
assert x_actual == x_expected
|
|
||||||
assert y_actual == y_expected
|
|
||||||
|
|
||||||
|
|
||||||
def test_fit_xy() -> None:
|
def test_fit_xy() -> None:
|
||||||
x: Dict[Hashable, np.ndarray] = {
|
x: Dict[Hashable, np.ndarray] = {
|
||||||
"Lower bound": np.array([[0.0, 0.0], [1.0, 2.0]]),
|
"Lower bound": np.array([[0.0, 0.0], [1.0, 2.0]]),
|
||||||
@@ -168,39 +91,8 @@ def test_fit_xy() -> None:
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def test_fit_xy_without_ub() -> None:
|
def test_sample_predict(sample: Sample) -> None:
|
||||||
x: Dict[Hashable, np.ndarray] = {
|
x, y = ObjectiveValueComponent().sample_xy(None, sample)
|
||||||
"Lower bound": np.array([[0.0, 0.0], [1.0, 2.0]]),
|
|
||||||
"Upper bound": np.array([[0.0, 0.0], [1.0, 2.0]]),
|
|
||||||
}
|
|
||||||
y: Dict[Hashable, np.ndarray] = {
|
|
||||||
"Lower bound": np.array([[100.0]]),
|
|
||||||
}
|
|
||||||
reg = Mock(spec=Regressor)
|
|
||||||
reg.clone = Mock(side_effect=lambda: Mock(spec=Regressor))
|
|
||||||
comp = ObjectiveValueComponent(regressor=reg)
|
|
||||||
assert "Upper bound" not in comp.regressors
|
|
||||||
assert "Lower bound" not in comp.regressors
|
|
||||||
comp.fit_xy(x, y)
|
|
||||||
assert reg.clone.call_count == 1
|
|
||||||
assert "Upper bound" not in comp.regressors
|
|
||||||
assert "Lower bound" in comp.regressors
|
|
||||||
assert comp.regressors["Lower bound"].fit.call_count == 1 # type: ignore
|
|
||||||
assert_array_equal(
|
|
||||||
comp.regressors["Lower bound"].fit.call_args[0][0], # type: ignore
|
|
||||||
x["Lower bound"],
|
|
||||||
)
|
|
||||||
assert_array_equal(
|
|
||||||
comp.regressors["Lower bound"].fit.call_args[0][1], # type: ignore
|
|
||||||
y["Lower bound"],
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def test_sample_predict(
|
|
||||||
instance_old: Instance,
|
|
||||||
sample_old: TrainingSample,
|
|
||||||
) -> None:
|
|
||||||
x, y = ObjectiveValueComponent().sample_xy_old(instance_old, sample_old)
|
|
||||||
comp = ObjectiveValueComponent()
|
comp = ObjectiveValueComponent()
|
||||||
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
||||||
comp.regressors["Upper bound"] = Mock(spec=Regressor)
|
comp.regressors["Upper bound"] = Mock(spec=Regressor)
|
||||||
@@ -210,7 +102,7 @@ def test_sample_predict(
|
|||||||
comp.regressors["Upper bound"].predict = Mock( # type: ignore
|
comp.regressors["Upper bound"].predict = Mock( # type: ignore
|
||||||
side_effect=lambda _: np.array([[60.0]])
|
side_effect=lambda _: np.array([[60.0]])
|
||||||
)
|
)
|
||||||
pred = comp.sample_predict_old(instance_old, sample_old)
|
pred = comp.sample_predict(sample)
|
||||||
assert pred == {
|
assert pred == {
|
||||||
"Lower bound": 50.0,
|
"Lower bound": 50.0,
|
||||||
"Upper bound": 60.0,
|
"Upper bound": 60.0,
|
||||||
@@ -225,36 +117,13 @@ def test_sample_predict(
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def test_sample_predict_without_ub_old(
|
def test_sample_evaluate(sample: Sample) -> None:
|
||||||
instance_old: Instance,
|
|
||||||
sample_without_ub_old: TrainingSample,
|
|
||||||
) -> None:
|
|
||||||
x, y = ObjectiveValueComponent().sample_xy_old(instance_old, sample_without_ub_old)
|
|
||||||
comp = ObjectiveValueComponent()
|
|
||||||
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
|
||||||
comp.regressors["Lower bound"].predict = Mock( # type: ignore
|
|
||||||
side_effect=lambda _: np.array([[50.0]])
|
|
||||||
)
|
|
||||||
pred = comp.sample_predict_old(instance_old, sample_without_ub_old)
|
|
||||||
assert pred == {
|
|
||||||
"Lower bound": 50.0,
|
|
||||||
}
|
|
||||||
assert_array_equal(
|
|
||||||
comp.regressors["Lower bound"].predict.call_args[0][0], # type: ignore
|
|
||||||
x["Lower bound"],
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def test_sample_evaluate_old(
|
|
||||||
instance_old: Instance,
|
|
||||||
sample_old: TrainingSample,
|
|
||||||
) -> None:
|
|
||||||
comp = ObjectiveValueComponent()
|
comp = ObjectiveValueComponent()
|
||||||
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
||||||
comp.regressors["Lower bound"].predict = lambda _: np.array([[1.05]]) # type: ignore
|
comp.regressors["Lower bound"].predict = lambda _: np.array([[1.05]]) # type: ignore
|
||||||
comp.regressors["Upper bound"] = Mock(spec=Regressor)
|
comp.regressors["Upper bound"] = Mock(spec=Regressor)
|
||||||
comp.regressors["Upper bound"].predict = lambda _: np.array([[2.50]]) # type: ignore
|
comp.regressors["Upper bound"].predict = lambda _: np.array([[2.50]]) # type: ignore
|
||||||
ev = comp.sample_evaluate_old(instance_old, sample_old)
|
ev = comp.sample_evaluate(None, sample)
|
||||||
assert ev == {
|
assert ev == {
|
||||||
"Lower bound": {
|
"Lower bound": {
|
||||||
"Actual value": 1.0,
|
"Actual value": 1.0,
|
||||||
|
|||||||
Reference in New Issue
Block a user