|
|
|
@ -10,38 +10,12 @@ from numpy.testing import assert_array_equal
|
|
|
|
|
|
|
|
|
|
from miplearn.classifiers import Regressor
|
|
|
|
|
from miplearn.components.objective import ObjectiveValueComponent
|
|
|
|
|
from miplearn.features import TrainingSample, InstanceFeatures, Features, Sample
|
|
|
|
|
from miplearn.instance.base import Instance
|
|
|
|
|
from miplearn.features import InstanceFeatures, Features, Sample
|
|
|
|
|
from miplearn.solvers.internal import MIPSolveStats, LPSolveStats
|
|
|
|
|
from miplearn.solvers.learning import LearningSolver
|
|
|
|
|
from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
|
def instance_old(features_old: Features) -> Instance:
|
|
|
|
|
instance = Mock(spec=Instance)
|
|
|
|
|
instance.features = features_old
|
|
|
|
|
return instance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
|
def features_old() -> Features:
|
|
|
|
|
return Features(
|
|
|
|
|
instance=InstanceFeatures(
|
|
|
|
|
user_features=[1.0, 2.0],
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
|
def sample_old() -> TrainingSample:
|
|
|
|
|
return TrainingSample(
|
|
|
|
|
lower_bound=1.0,
|
|
|
|
|
upper_bound=2.0,
|
|
|
|
|
lp_value=3.0,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
|
def sample() -> Sample:
|
|
|
|
|
sample = Sample(
|
|
|
|
@ -63,22 +37,6 @@ def sample() -> Sample:
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
|
def sample_without_lp() -> TrainingSample:
|
|
|
|
|
return TrainingSample(
|
|
|
|
|
lower_bound=1.0,
|
|
|
|
|
upper_bound=2.0,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
|
def sample_without_ub_old() -> TrainingSample:
|
|
|
|
|
return TrainingSample(
|
|
|
|
|
lower_bound=1.0,
|
|
|
|
|
lp_value=3.0,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_sample_xy(sample: Sample) -> None:
|
|
|
|
|
x_expected = {
|
|
|
|
|
"Lower bound": [[1.0, 2.0, 3.0]],
|
|
|
|
@ -95,41 +53,6 @@ def test_sample_xy(sample: Sample) -> None:
|
|
|
|
|
assert y_actual == y_expected
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_sample_xy_without_lp_old(
|
|
|
|
|
instance_old: Instance,
|
|
|
|
|
sample_without_lp: TrainingSample,
|
|
|
|
|
) -> None:
|
|
|
|
|
x_expected = {
|
|
|
|
|
"Lower bound": [[1.0, 2.0]],
|
|
|
|
|
"Upper bound": [[1.0, 2.0]],
|
|
|
|
|
}
|
|
|
|
|
y_expected = {
|
|
|
|
|
"Lower bound": [[1.0]],
|
|
|
|
|
"Upper bound": [[2.0]],
|
|
|
|
|
}
|
|
|
|
|
xy = ObjectiveValueComponent().sample_xy_old(instance_old, sample_without_lp)
|
|
|
|
|
assert xy is not None
|
|
|
|
|
x_actual, y_actual = xy
|
|
|
|
|
assert x_actual == x_expected
|
|
|
|
|
assert y_actual == y_expected
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_sample_xy_without_ub_old(
|
|
|
|
|
instance_old: Instance,
|
|
|
|
|
sample_without_ub_old: TrainingSample,
|
|
|
|
|
) -> None:
|
|
|
|
|
x_expected = {
|
|
|
|
|
"Lower bound": [[1.0, 2.0, 3.0]],
|
|
|
|
|
"Upper bound": [[1.0, 2.0, 3.0]],
|
|
|
|
|
}
|
|
|
|
|
y_expected = {"Lower bound": [[1.0]]}
|
|
|
|
|
xy = ObjectiveValueComponent().sample_xy_old(instance_old, sample_without_ub_old)
|
|
|
|
|
assert xy is not None
|
|
|
|
|
x_actual, y_actual = xy
|
|
|
|
|
assert x_actual == x_expected
|
|
|
|
|
assert y_actual == y_expected
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_fit_xy() -> None:
|
|
|
|
|
x: Dict[Hashable, np.ndarray] = {
|
|
|
|
|
"Lower bound": np.array([[0.0, 0.0], [1.0, 2.0]]),
|
|
|
|
@ -168,39 +91,8 @@ def test_fit_xy() -> None:
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_fit_xy_without_ub() -> None:
|
|
|
|
|
x: Dict[Hashable, np.ndarray] = {
|
|
|
|
|
"Lower bound": np.array([[0.0, 0.0], [1.0, 2.0]]),
|
|
|
|
|
"Upper bound": np.array([[0.0, 0.0], [1.0, 2.0]]),
|
|
|
|
|
}
|
|
|
|
|
y: Dict[Hashable, np.ndarray] = {
|
|
|
|
|
"Lower bound": np.array([[100.0]]),
|
|
|
|
|
}
|
|
|
|
|
reg = Mock(spec=Regressor)
|
|
|
|
|
reg.clone = Mock(side_effect=lambda: Mock(spec=Regressor))
|
|
|
|
|
comp = ObjectiveValueComponent(regressor=reg)
|
|
|
|
|
assert "Upper bound" not in comp.regressors
|
|
|
|
|
assert "Lower bound" not in comp.regressors
|
|
|
|
|
comp.fit_xy(x, y)
|
|
|
|
|
assert reg.clone.call_count == 1
|
|
|
|
|
assert "Upper bound" not in comp.regressors
|
|
|
|
|
assert "Lower bound" in comp.regressors
|
|
|
|
|
assert comp.regressors["Lower bound"].fit.call_count == 1 # type: ignore
|
|
|
|
|
assert_array_equal(
|
|
|
|
|
comp.regressors["Lower bound"].fit.call_args[0][0], # type: ignore
|
|
|
|
|
x["Lower bound"],
|
|
|
|
|
)
|
|
|
|
|
assert_array_equal(
|
|
|
|
|
comp.regressors["Lower bound"].fit.call_args[0][1], # type: ignore
|
|
|
|
|
y["Lower bound"],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_sample_predict(
|
|
|
|
|
instance_old: Instance,
|
|
|
|
|
sample_old: TrainingSample,
|
|
|
|
|
) -> None:
|
|
|
|
|
x, y = ObjectiveValueComponent().sample_xy_old(instance_old, sample_old)
|
|
|
|
|
def test_sample_predict(sample: Sample) -> None:
|
|
|
|
|
x, y = ObjectiveValueComponent().sample_xy(None, sample)
|
|
|
|
|
comp = ObjectiveValueComponent()
|
|
|
|
|
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
|
|
|
|
comp.regressors["Upper bound"] = Mock(spec=Regressor)
|
|
|
|
@ -210,7 +102,7 @@ def test_sample_predict(
|
|
|
|
|
comp.regressors["Upper bound"].predict = Mock( # type: ignore
|
|
|
|
|
side_effect=lambda _: np.array([[60.0]])
|
|
|
|
|
)
|
|
|
|
|
pred = comp.sample_predict_old(instance_old, sample_old)
|
|
|
|
|
pred = comp.sample_predict(sample)
|
|
|
|
|
assert pred == {
|
|
|
|
|
"Lower bound": 50.0,
|
|
|
|
|
"Upper bound": 60.0,
|
|
|
|
@ -225,36 +117,13 @@ def test_sample_predict(
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_sample_predict_without_ub_old(
|
|
|
|
|
instance_old: Instance,
|
|
|
|
|
sample_without_ub_old: TrainingSample,
|
|
|
|
|
) -> None:
|
|
|
|
|
x, y = ObjectiveValueComponent().sample_xy_old(instance_old, sample_without_ub_old)
|
|
|
|
|
comp = ObjectiveValueComponent()
|
|
|
|
|
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
|
|
|
|
comp.regressors["Lower bound"].predict = Mock( # type: ignore
|
|
|
|
|
side_effect=lambda _: np.array([[50.0]])
|
|
|
|
|
)
|
|
|
|
|
pred = comp.sample_predict_old(instance_old, sample_without_ub_old)
|
|
|
|
|
assert pred == {
|
|
|
|
|
"Lower bound": 50.0,
|
|
|
|
|
}
|
|
|
|
|
assert_array_equal(
|
|
|
|
|
comp.regressors["Lower bound"].predict.call_args[0][0], # type: ignore
|
|
|
|
|
x["Lower bound"],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_sample_evaluate_old(
|
|
|
|
|
instance_old: Instance,
|
|
|
|
|
sample_old: TrainingSample,
|
|
|
|
|
) -> None:
|
|
|
|
|
def test_sample_evaluate(sample: Sample) -> None:
|
|
|
|
|
comp = ObjectiveValueComponent()
|
|
|
|
|
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
|
|
|
|
comp.regressors["Lower bound"].predict = lambda _: np.array([[1.05]]) # type: ignore
|
|
|
|
|
comp.regressors["Upper bound"] = Mock(spec=Regressor)
|
|
|
|
|
comp.regressors["Upper bound"].predict = lambda _: np.array([[2.50]]) # type: ignore
|
|
|
|
|
ev = comp.sample_evaluate_old(instance_old, sample_old)
|
|
|
|
|
ev = comp.sample_evaluate(None, sample)
|
|
|
|
|
assert ev == {
|
|
|
|
|
"Lower bound": {
|
|
|
|
|
"Actual value": 1.0,
|
|
|
|
|