|
|
|
@ -39,7 +39,6 @@
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"id": "830f3784-a3fc-4e2f-a484-e7808841ffe8",
|
|
|
|
|
"metadata": {
|
|
|
|
|
"jp-MarkdownHeadingCollapsed": true,
|
|
|
|
|
"tags": []
|
|
|
|
|
},
|
|
|
|
|
"source": [
|
|
|
|
@ -159,20 +158,22 @@
|
|
|
|
|
"H 0 0 2.0000000 1.27484 36.3% - 0s\n",
|
|
|
|
|
" 0 0 1.27484 0 4 2.00000 1.27484 36.3% - 0s\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"Explored 1 nodes (38 simplex iterations) in 0.01 seconds (0.00 work units)\n",
|
|
|
|
|
"Explored 1 nodes (38 simplex iterations) in 0.03 seconds (0.00 work units)\n",
|
|
|
|
|
"Thread count was 20 (of 20 available processors)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"Solution count 3: 2 4 5 \n",
|
|
|
|
|
"\n",
|
|
|
|
|
"Optimal solution found (tolerance 1.00e-04)\n",
|
|
|
|
|
"Best objective 2.000000000000e+00, best bound 2.000000000000e+00, gap 0.0000%\n"
|
|
|
|
|
"Best objective 2.000000000000e+00, best bound 2.000000000000e+00, gap 0.0000%\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"User-callback calls 143, time in user-callback 0.00 sec\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"import numpy as np\n",
|
|
|
|
|
"from scipy.stats import uniform, randint\n",
|
|
|
|
|
"from miplearn.problems.binpack import BinPackGenerator, build_binpack_model\n",
|
|
|
|
|
"from miplearn.problems.binpack import BinPackGenerator, build_binpack_model_gurobipy\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Set random seed, to make example reproducible\n",
|
|
|
|
|
"np.random.seed(42)\n",
|
|
|
|
@ -193,7 +194,7 @@
|
|
|
|
|
"print()\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Optimize first instance\n",
|
|
|
|
|
"model = build_binpack_model(data[0])\n",
|
|
|
|
|
"model = build_binpack_model_gurobipy(data[0])\n",
|
|
|
|
|
"model.optimize()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
@ -360,7 +361,9 @@
|
|
|
|
|
"No other solutions better than -1279\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"Optimal solution found (tolerance 1.00e-04)\n",
|
|
|
|
|
"Best objective -1.279000000000e+03, best bound -1.279000000000e+03, gap 0.0000%\n"
|
|
|
|
|
"Best objective -1.279000000000e+03, best bound -1.279000000000e+03, gap 0.0000%\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"User-callback calls 490, time in user-callback 0.00 sec\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
@ -369,7 +372,7 @@
|
|
|
|
|
"from scipy.stats import uniform, randint\n",
|
|
|
|
|
"from miplearn.problems.multiknapsack import (\n",
|
|
|
|
|
" MultiKnapsackGenerator,\n",
|
|
|
|
|
" build_multiknapsack_model,\n",
|
|
|
|
|
" build_multiknapsack_model_gurobipy,\n",
|
|
|
|
|
")\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Set random seed, to make example reproducible\n",
|
|
|
|
@ -396,7 +399,7 @@
|
|
|
|
|
"print()\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Build model and optimize\n",
|
|
|
|
|
"model = build_multiknapsack_model(data[0])\n",
|
|
|
|
|
"model = build_multiknapsack_model_gurobipy(data[0])\n",
|
|
|
|
|
"model.optimize()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
@ -535,20 +538,22 @@
|
|
|
|
|
" 0 0 86.06884 0 15 93.92000 86.06884 8.36% - 0s\n",
|
|
|
|
|
"* 0 0 0 91.2300000 91.23000 0.00% - 0s\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"Explored 1 nodes (70 simplex iterations) in 0.07 seconds (0.00 work units)\n",
|
|
|
|
|
"Explored 1 nodes (70 simplex iterations) in 0.08 seconds (0.00 work units)\n",
|
|
|
|
|
"Thread count was 20 (of 20 available processors)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"Solution count 10: 91.23 93.92 93.98 ... 368.79\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"Optimal solution found (tolerance 1.00e-04)\n",
|
|
|
|
|
"Best objective 9.123000000000e+01, best bound 9.123000000000e+01, gap 0.0000%\n"
|
|
|
|
|
"Best objective 9.123000000000e+01, best bound 9.123000000000e+01, gap 0.0000%\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"User-callback calls 190, time in user-callback 0.00 sec\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"import numpy as np\n",
|
|
|
|
|
"from scipy.stats import uniform, randint\n",
|
|
|
|
|
"from miplearn.problems.pmedian import PMedianGenerator, build_pmedian_model\n",
|
|
|
|
|
"from miplearn.problems.pmedian import PMedianGenerator, build_pmedian_model_gurobipy\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Set random seed, to make example reproducible\n",
|
|
|
|
|
"np.random.seed(42)\n",
|
|
|
|
@ -576,7 +581,7 @@
|
|
|
|
|
"print()\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Build and optimize model\n",
|
|
|
|
|
"model = build_pmedian_model(data[0])\n",
|
|
|
|
|
"model = build_pmedian_model_gurobipy(data[0])\n",
|
|
|
|
|
"model.optimize()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
@ -694,7 +699,9 @@
|
|
|
|
|
"Solution count 1: 213.49 \n",
|
|
|
|
|
"\n",
|
|
|
|
|
"Optimal solution found (tolerance 1.00e-04)\n",
|
|
|
|
|
"Best objective 2.134900000000e+02, best bound 2.134900000000e+02, gap 0.0000%\n"
|
|
|
|
|
"Best objective 2.134900000000e+02, best bound 2.134900000000e+02, gap 0.0000%\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"User-callback calls 178, time in user-callback 0.00 sec\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
@ -834,14 +841,16 @@
|
|
|
|
|
"No other solutions better than -1986.37\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"Optimal solution found (tolerance 1.00e-04)\n",
|
|
|
|
|
"Best objective -1.986370000000e+03, best bound -1.986370000000e+03, gap 0.0000%\n"
|
|
|
|
|
"Best objective -1.986370000000e+03, best bound -1.986370000000e+03, gap 0.0000%\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"User-callback calls 238, time in user-callback 0.00 sec\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"import numpy as np\n",
|
|
|
|
|
"from scipy.stats import uniform, randint\n",
|
|
|
|
|
"from miplearn.problems.setpack import SetPackGenerator, build_setpack_model\n",
|
|
|
|
|
"from miplearn.problems.setpack import SetPackGenerator, build_setpack_model_gurobipy\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Set random seed, to make example reproducible\n",
|
|
|
|
|
"np.random.seed(42)\n",
|
|
|
|
@ -865,7 +874,7 @@
|
|
|
|
|
"print()\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Build and optimize model\n",
|
|
|
|
|
"model = build_setpack_model(data[0])\n",
|
|
|
|
|
"model = build_setpack_model_gurobipy(data[0])\n",
|
|
|
|
|
"model.optimize()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
@ -1374,13 +1383,15 @@
|
|
|
|
|
" RLT: 1\n",
|
|
|
|
|
" Relax-and-lift: 7\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"Explored 1 nodes (234 simplex iterations) in 0.03 seconds (0.02 work units)\n",
|
|
|
|
|
"Explored 1 nodes (234 simplex iterations) in 0.02 seconds (0.02 work units)\n",
|
|
|
|
|
"Thread count was 20 (of 20 available processors)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"Solution count 5: 364722 368600 374044 ... 440662\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"Optimal solution found (tolerance 1.00e-04)\n",
|
|
|
|
|
"Best objective 3.647217661000e+05, best bound 3.647217661000e+05, gap 0.0000%\n"
|
|
|
|
|
"Best objective 3.647217661000e+05, best bound 3.647217661000e+05, gap 0.0000%\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"User-callback calls 677, time in user-callback 0.00 sec\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
@ -1388,7 +1399,7 @@
|
|
|
|
|
"import random\n",
|
|
|
|
|
"import numpy as np\n",
|
|
|
|
|
"from scipy.stats import uniform, randint\n",
|
|
|
|
|
"from miplearn.problems.uc import UnitCommitmentGenerator, build_uc_model\n",
|
|
|
|
|
"from miplearn.problems.uc import UnitCommitmentGenerator, build_uc_model_gurobipy\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Set random seed to make example reproducible\n",
|
|
|
|
|
"random.seed(42)\n",
|
|
|
|
@ -1424,7 +1435,7 @@
|
|
|
|
|
" print()\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Load and optimize the first instance\n",
|
|
|
|
|
"model = build_uc_model(data[0])\n",
|
|
|
|
|
"model = build_uc_model_gurobipy(data[0])\n",
|
|
|
|
|
"model.optimize()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
@ -1532,7 +1543,9 @@
|
|
|
|
|
"Solution count 1: 301 \n",
|
|
|
|
|
"\n",
|
|
|
|
|
"Optimal solution found (tolerance 1.00e-04)\n",
|
|
|
|
|
"Best objective 3.010000000000e+02, best bound 3.010000000000e+02, gap 0.0000%\n"
|
|
|
|
|
"Best objective 3.010000000000e+02, best bound 3.010000000000e+02, gap 0.0000%\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"User-callback calls 326, time in user-callback 0.00 sec\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
@ -1542,7 +1555,7 @@
|
|
|
|
|
"from scipy.stats import uniform, randint\n",
|
|
|
|
|
"from miplearn.problems.vertexcover import (\n",
|
|
|
|
|
" MinWeightVertexCoverGenerator,\n",
|
|
|
|
|
" build_vertexcover_model,\n",
|
|
|
|
|
" build_vertexcover_model_gurobipy,\n",
|
|
|
|
|
")\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Set random seed to make example reproducible\n",
|
|
|
|
@ -1565,26 +1578,9 @@
|
|
|
|
|
"print()\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Load and optimize the first instance\n",
|
|
|
|
|
"model = build_vertexcover_model(data[0])\n",
|
|
|
|
|
"model = build_vertexcover_model_gurobipy(data[0])\n",
|
|
|
|
|
"model.optimize()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
"id": "9f12e91f",
|
|
|
|
|
"metadata": {
|
|
|
|
|
"ExecuteTime": {
|
|
|
|
|
"end_time": "2023-11-07T16:29:49.075852252Z",
|
|
|
|
|
"start_time": "2023-11-07T16:29:49.050243601Z"
|
|
|
|
|
},
|
|
|
|
|
"collapsed": false,
|
|
|
|
|
"jupyter": {
|
|
|
|
|
"outputs_hidden": false
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": []
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"metadata": {
|
|
|
|
|