Add _gurobipy suffix to all build_model functions

dev
Alinson S. Xavier 2 years ago
parent fb3f219ea8
commit b55554d410

@ -183,7 +183,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 2,
"id": "ac6f8c6f",
"metadata": {
"ExecuteTime": {

@ -101,7 +101,7 @@
"from miplearn.io import write_pkl_gz\n",
"from miplearn.problems.multiknapsack import (\n",
" MultiKnapsackGenerator,\n",
" build_multiknapsack_model,\n",
" build_multiknapsack_model_gurobipy,\n",
")\n",
"\n",
"# Set random seed to make example reproducible\n",
@ -127,7 +127,7 @@
"# Run the basic collector\n",
"BasicCollector().collect(\n",
" glob(\"data/multiknapsack/*\"),\n",
" build_multiknapsack_model,\n",
" build_multiknapsack_model_gurobipy,\n",
" n_jobs=4,\n",
")\n",
"\n",

@ -39,7 +39,6 @@
"cell_type": "markdown",
"id": "830f3784-a3fc-4e2f-a484-e7808841ffe8",
"metadata": {
"jp-MarkdownHeadingCollapsed": true,
"tags": []
},
"source": [
@ -159,20 +158,22 @@
"H 0 0 2.0000000 1.27484 36.3% - 0s\n",
" 0 0 1.27484 0 4 2.00000 1.27484 36.3% - 0s\n",
"\n",
"Explored 1 nodes (38 simplex iterations) in 0.01 seconds (0.00 work units)\n",
"Explored 1 nodes (38 simplex iterations) in 0.03 seconds (0.00 work units)\n",
"Thread count was 20 (of 20 available processors)\n",
"\n",
"Solution count 3: 2 4 5 \n",
"\n",
"Optimal solution found (tolerance 1.00e-04)\n",
"Best objective 2.000000000000e+00, best bound 2.000000000000e+00, gap 0.0000%\n"
"Best objective 2.000000000000e+00, best bound 2.000000000000e+00, gap 0.0000%\n",
"\n",
"User-callback calls 143, time in user-callback 0.00 sec\n"
]
}
],
"source": [
"import numpy as np\n",
"from scipy.stats import uniform, randint\n",
"from miplearn.problems.binpack import BinPackGenerator, build_binpack_model\n",
"from miplearn.problems.binpack import BinPackGenerator, build_binpack_model_gurobipy\n",
"\n",
"# Set random seed, to make example reproducible\n",
"np.random.seed(42)\n",
@ -193,7 +194,7 @@
"print()\n",
"\n",
"# Optimize first instance\n",
"model = build_binpack_model(data[0])\n",
"model = build_binpack_model_gurobipy(data[0])\n",
"model.optimize()"
]
},
@ -360,7 +361,9 @@
"No other solutions better than -1279\n",
"\n",
"Optimal solution found (tolerance 1.00e-04)\n",
"Best objective -1.279000000000e+03, best bound -1.279000000000e+03, gap 0.0000%\n"
"Best objective -1.279000000000e+03, best bound -1.279000000000e+03, gap 0.0000%\n",
"\n",
"User-callback calls 490, time in user-callback 0.00 sec\n"
]
}
],
@ -369,7 +372,7 @@
"from scipy.stats import uniform, randint\n",
"from miplearn.problems.multiknapsack import (\n",
" MultiKnapsackGenerator,\n",
" build_multiknapsack_model,\n",
" build_multiknapsack_model_gurobipy,\n",
")\n",
"\n",
"# Set random seed, to make example reproducible\n",
@ -396,7 +399,7 @@
"print()\n",
"\n",
"# Build model and optimize\n",
"model = build_multiknapsack_model(data[0])\n",
"model = build_multiknapsack_model_gurobipy(data[0])\n",
"model.optimize()"
]
},
@ -535,20 +538,22 @@
" 0 0 86.06884 0 15 93.92000 86.06884 8.36% - 0s\n",
"* 0 0 0 91.2300000 91.23000 0.00% - 0s\n",
"\n",
"Explored 1 nodes (70 simplex iterations) in 0.07 seconds (0.00 work units)\n",
"Explored 1 nodes (70 simplex iterations) in 0.08 seconds (0.00 work units)\n",
"Thread count was 20 (of 20 available processors)\n",
"\n",
"Solution count 10: 91.23 93.92 93.98 ... 368.79\n",
"\n",
"Optimal solution found (tolerance 1.00e-04)\n",
"Best objective 9.123000000000e+01, best bound 9.123000000000e+01, gap 0.0000%\n"
"Best objective 9.123000000000e+01, best bound 9.123000000000e+01, gap 0.0000%\n",
"\n",
"User-callback calls 190, time in user-callback 0.00 sec\n"
]
}
],
"source": [
"import numpy as np\n",
"from scipy.stats import uniform, randint\n",
"from miplearn.problems.pmedian import PMedianGenerator, build_pmedian_model\n",
"from miplearn.problems.pmedian import PMedianGenerator, build_pmedian_model_gurobipy\n",
"\n",
"# Set random seed, to make example reproducible\n",
"np.random.seed(42)\n",
@ -576,7 +581,7 @@
"print()\n",
"\n",
"# Build and optimize model\n",
"model = build_pmedian_model(data[0])\n",
"model = build_pmedian_model_gurobipy(data[0])\n",
"model.optimize()"
]
},
@ -694,7 +699,9 @@
"Solution count 1: 213.49 \n",
"\n",
"Optimal solution found (tolerance 1.00e-04)\n",
"Best objective 2.134900000000e+02, best bound 2.134900000000e+02, gap 0.0000%\n"
"Best objective 2.134900000000e+02, best bound 2.134900000000e+02, gap 0.0000%\n",
"\n",
"User-callback calls 178, time in user-callback 0.00 sec\n"
]
}
],
@ -834,14 +841,16 @@
"No other solutions better than -1986.37\n",
"\n",
"Optimal solution found (tolerance 1.00e-04)\n",
"Best objective -1.986370000000e+03, best bound -1.986370000000e+03, gap 0.0000%\n"
"Best objective -1.986370000000e+03, best bound -1.986370000000e+03, gap 0.0000%\n",
"\n",
"User-callback calls 238, time in user-callback 0.00 sec\n"
]
}
],
"source": [
"import numpy as np\n",
"from scipy.stats import uniform, randint\n",
"from miplearn.problems.setpack import SetPackGenerator, build_setpack_model\n",
"from miplearn.problems.setpack import SetPackGenerator, build_setpack_model_gurobipy\n",
"\n",
"# Set random seed, to make example reproducible\n",
"np.random.seed(42)\n",
@ -865,7 +874,7 @@
"print()\n",
"\n",
"# Build and optimize model\n",
"model = build_setpack_model(data[0])\n",
"model = build_setpack_model_gurobipy(data[0])\n",
"model.optimize()"
]
},
@ -1374,13 +1383,15 @@
" RLT: 1\n",
" Relax-and-lift: 7\n",
"\n",
"Explored 1 nodes (234 simplex iterations) in 0.03 seconds (0.02 work units)\n",
"Explored 1 nodes (234 simplex iterations) in 0.02 seconds (0.02 work units)\n",
"Thread count was 20 (of 20 available processors)\n",
"\n",
"Solution count 5: 364722 368600 374044 ... 440662\n",
"\n",
"Optimal solution found (tolerance 1.00e-04)\n",
"Best objective 3.647217661000e+05, best bound 3.647217661000e+05, gap 0.0000%\n"
"Best objective 3.647217661000e+05, best bound 3.647217661000e+05, gap 0.0000%\n",
"\n",
"User-callback calls 677, time in user-callback 0.00 sec\n"
]
}
],
@ -1388,7 +1399,7 @@
"import random\n",
"import numpy as np\n",
"from scipy.stats import uniform, randint\n",
"from miplearn.problems.uc import UnitCommitmentGenerator, build_uc_model\n",
"from miplearn.problems.uc import UnitCommitmentGenerator, build_uc_model_gurobipy\n",
"\n",
"# Set random seed to make example reproducible\n",
"random.seed(42)\n",
@ -1424,7 +1435,7 @@
" print()\n",
"\n",
"# Load and optimize the first instance\n",
"model = build_uc_model(data[0])\n",
"model = build_uc_model_gurobipy(data[0])\n",
"model.optimize()"
]
},
@ -1532,7 +1543,9 @@
"Solution count 1: 301 \n",
"\n",
"Optimal solution found (tolerance 1.00e-04)\n",
"Best objective 3.010000000000e+02, best bound 3.010000000000e+02, gap 0.0000%\n"
"Best objective 3.010000000000e+02, best bound 3.010000000000e+02, gap 0.0000%\n",
"\n",
"User-callback calls 326, time in user-callback 0.00 sec\n"
]
}
],
@ -1542,7 +1555,7 @@
"from scipy.stats import uniform, randint\n",
"from miplearn.problems.vertexcover import (\n",
" MinWeightVertexCoverGenerator,\n",
" build_vertexcover_model,\n",
" build_vertexcover_model_gurobipy,\n",
")\n",
"\n",
"# Set random seed to make example reproducible\n",
@ -1565,26 +1578,9 @@
"print()\n",
"\n",
"# Load and optimize the first instance\n",
"model = build_vertexcover_model(data[0])\n",
"model = build_vertexcover_model_gurobipy(data[0])\n",
"model.optimize()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9f12e91f",
"metadata": {
"ExecuteTime": {
"end_time": "2023-11-07T16:29:49.075852252Z",
"start_time": "2023-11-07T16:29:49.050243601Z"
},
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": []
}
],
"metadata": {

@ -92,6 +92,8 @@
"\n",
"Solved in 15 iterations and 0.00 seconds (0.00 work units)\n",
"Optimal objective 2.761000000e+03\n",
"\n",
"User-callback calls 56, time in user-callback 0.00 sec\n",
"Set parameter PreCrush to value 1\n",
"Set parameter LazyConstraints to value 1\n",
"Gurobi Optimizer version 10.0.3 build v10.0.3rc0 (linux64)\n",

@ -87,8 +87,10 @@
"\n",
"# Set up Python logging\n",
"import logging\n",
"\n",
"logging.basicConfig(level=logging.WARNING)\n",
"\n",
"\n",
"def build_tsp_model_gurobipy_simplified(data):\n",
" # Read data from file if a filename is provided\n",
" if isinstance(data, str):\n",
@ -99,9 +101,7 @@
"\n",
" # Create set of edges between every pair of cities, for convenience\n",
" edges = tuplelist(\n",
" (i, j)\n",
" for i in range(data.n_cities)\n",
" for j in range(i + 1, data.n_cities)\n",
" (i, j) for i in range(data.n_cities) for j in range(i + 1, data.n_cities)\n",
" )\n",
"\n",
" # Add binary variable x[e] for each edge e\n",
@ -113,11 +113,8 @@
" # Add constraint: must choose two edges adjacent to each city\n",
" model.addConstrs(\n",
" (\n",
" quicksum(\n",
" x[min(i, j), max(i, j)]\n",
" for j in range(data.n_cities)\n",
" if i != j\n",
" ) == 2\n",
" quicksum(x[min(i, j), max(i, j)] for j in range(data.n_cities) if i != j)\n",
" == 2\n",
" for i in range(data.n_cities)\n",
" ),\n",
" name=\"eq_degree\",\n",
@ -129,7 +126,7 @@
" \"\"\"\n",
" # Query current value of the x variables\n",
" x_val = m.inner.cbGetSolution(x)\n",
" \n",
"\n",
" # Initialize empty set of violations\n",
" violations = []\n",
"\n",
@ -164,9 +161,7 @@
" \"\"\"\n",
" print(f\"Enforcing {len(violations)} subtour elimination constraints\")\n",
" for violation in violations:\n",
" m.add_constr(\n",
" quicksum(x[e[0], e[1]] for e in violation) >= 2\n",
" )\n",
" m.add_constr(quicksum(x[e[0], e[1]] for e in violation) >= 2)\n",
"\n",
" return GurobiModel(\n",
" model,\n",
@ -494,7 +489,7 @@
}
],
"source": [
"solver = LearningSolver(components=[]) # empty set of ML components\n",
"solver = LearningSolver(components=[]) # empty set of ML components\n",
"solver.optimize(test_data[0], build_tsp_model_gurobipy_simplified);"
]
},

@ -54,7 +54,7 @@ class MinProbabilityClassifier(BaseEstimator):
y_pred = []
for sample_idx in range(n_samples):
yi = float("nan")
for (class_idx, class_val) in enumerate(self.classes_):
for class_idx, class_val in enumerate(self.classes_):
if y_proba[sample_idx, class_idx] >= self.thresholds[class_idx]:
yi = class_val
y_pred.append(yi)

@ -71,7 +71,7 @@ class EnforceProximity(PrimalComponentAction):
constr_lhs = []
constr_vars = []
constr_rhs = 0.0
for (i, var_name) in enumerate(var_names):
for i, var_name in enumerate(var_names):
if np.isnan(var_values[i]):
continue
constr_lhs.append(1.0 if var_values[i] < 0.5 else -1.0)

@ -91,7 +91,7 @@ class IndependentVarsPrimalComponent:
logger.info(f"Training {n_bin_vars} classifiers...")
self.clf_ = {}
for (var_idx, var_name) in enumerate(self.bin_var_names_):
for var_idx, var_name in enumerate(self.bin_var_names_):
self.clf_[var_name] = self.clone_fn(self.base_clf)
self.clf_[var_name].fit(
x_np[var_idx::n_bin_vars, :], y_np[var_idx::n_bin_vars]
@ -117,7 +117,7 @@ class IndependentVarsPrimalComponent:
# Predict optimal solution
logger.info("Predicting warm starts...")
y_pred = []
for (var_idx, var_name) in enumerate(self.bin_var_names_):
for var_idx, var_name in enumerate(self.bin_var_names_):
x_var = x_sample[var_idx, :].reshape(1, -1)
y_var = self.clf_[var_name].predict(x_var)
assert y_var.shape == (1,)

@ -25,7 +25,7 @@ class ExpertBranchPriorityComponent:
assert var_priority is not None
assert var_names is not None
for (var_idx, var_name) in enumerate(var_names):
for var_idx, var_name in enumerate(var_names):
if np.isfinite(var_priority[var_idx]):
var = model.getVarByName(var_name.decode())
var.branchPriority = int(log(1 + var_priority[var_idx]))

@ -11,7 +11,7 @@ from pyomo import environ as pe
def _gurobipy_set_params(model: gp.Model, params: Optional[dict[str, Any]]) -> None:
assert isinstance(model, gp.Model)
if params is not None:
for (param_name, param_value) in params.items():
for param_name, param_value in params.items():
setattr(model.params, param_name, param_value)
@ -24,5 +24,5 @@ def _pyomo_set_params(
solver == "gurobi_persistent"
), "setting parameters is only supported with gurobi_persistent"
if solver == "gurobi_persistent" and params is not None:
for (param_name, param_value) in params.items():
for param_name, param_value in params.items():
model.solver.set_gurobi_param(param_name, param_value)

@ -109,7 +109,7 @@ class BinPackGenerator:
return [_sample() for n in range(n_samples)]
def build_binpack_model(data: Union[str, BinPackData]) -> GurobiModel:
def build_binpack_model_gurobipy(data: Union[str, BinPackData]) -> GurobiModel:
"""Converts bin packing problem data into a concrete Gurobipy model."""
if isinstance(data, str):
data = read_pkl_gz(data)

@ -174,7 +174,9 @@ class MultiKnapsackGenerator:
return [_sample() for _ in range(n_samples)]
def build_multiknapsack_model(data: Union[str, MultiKnapsackData]) -> GurobiModel:
def build_multiknapsack_model_gurobipy(
data: Union[str, MultiKnapsackData]
) -> GurobiModel:
"""Converts multi-knapsack problem data into a concrete Gurobipy model."""
if isinstance(data, str):
data = read_pkl_gz(data)

@ -141,7 +141,7 @@ class PMedianGenerator:
return [_sample() for _ in range(n_samples)]
def build_pmedian_model(data: Union[str, PMedianData]) -> GurobiModel:
def build_pmedian_model_gurobipy(data: Union[str, PMedianData]) -> GurobiModel:
"""Converts capacitated p-median data into a concrete Gurobipy model."""
if isinstance(data, str):
data = read_pkl_gz(data)

@ -53,7 +53,7 @@ class SetPackGenerator:
]
def build_setpack_model(data: Union[str, SetPackData]) -> GurobiModel:
def build_setpack_model_gurobipy(data: Union[str, SetPackData]) -> GurobiModel:
if isinstance(data, str):
data = read_pkl_gz(data)
assert isinstance(data, SetPackData)

@ -101,7 +101,7 @@ def build_stab_model_gurobipy(
model.setObjective(quicksum(-data.weights[i] * x[i] for i in nodes))
# Edge inequalities
for (i1, i2) in data.graph.edges:
for i1, i2 in data.graph.edges:
model.addConstr(x[i1] + x[i2] <= 1)
def cuts_separate(m: GurobiModel) -> List[Hashable]:
@ -137,7 +137,7 @@ def build_stab_model_pyomo(
# Edge inequalities
model.edge_eqs = pe.ConstraintList()
for (i1, i2) in data.graph.edges:
for i1, i2 in data.graph.edges:
model.edge_eqs.add(model.x[i1] + model.x[i2] <= 1)
# Clique inequalities

@ -119,7 +119,6 @@ def build_tsp_model_gurobipy(
data: Union[str, TravelingSalesmanData],
params: Optional[dict[str, Any]] = None,
) -> GurobiModel:
model = gp.Model()
_gurobipy_set_params(model, params)
@ -173,7 +172,6 @@ def build_tsp_model_pyomo(
solver: str = "gurobi_persistent",
params: Optional[dict[str, Any]] = None,
) -> PyomoModel:
model = pe.ConcreteModel()
data = _tsp_read(data)

@ -112,7 +112,7 @@ class UnitCommitmentGenerator:
return [_sample() for _ in range(n_samples)]
def build_uc_model(data: Union[str, UnitCommitmentData]) -> GurobiModel:
def build_uc_model_gurobipy(data: Union[str, UnitCommitmentData]) -> GurobiModel:
"""
Models the unit commitment problem according to equations (1)-(5) of:

@ -40,7 +40,9 @@ class MinWeightVertexCoverGenerator:
]
def build_vertexcover_model(data: Union[str, MinWeightVertexCoverData]) -> GurobiModel:
def build_vertexcover_model_gurobipy(
data: Union[str, MinWeightVertexCoverData]
) -> GurobiModel:
if isinstance(data, str):
data = read_pkl_gz(data)
assert isinstance(data, MinWeightVertexCoverData)
@ -48,7 +50,7 @@ def build_vertexcover_model(data: Union[str, MinWeightVertexCoverData]) -> Gurob
nodes = list(data.graph.nodes)
x = model.addVars(nodes, vtype=GRB.BINARY, name="x")
model.setObjective(quicksum(data.weights[i] * x[i] for i in nodes))
for (v1, v2) in data.graph.edges:
for v1, v2 in data.graph.edges:
model.addConstr(x[v1] + x[v2] >= 1)
model.update()
return GurobiModel(model)

@ -184,7 +184,7 @@ class GurobiModel(AbstractModel):
assert var_names.shape == var_values.shape
n_fixed = 0
for (var_idx, var_name) in enumerate(var_names):
for var_idx, var_name in enumerate(var_names):
var_val = var_values[var_idx]
if np.isfinite(var_val):
var = self.inner.getVarByName(var_name.decode())
@ -229,7 +229,7 @@ class GurobiModel(AbstractModel):
self.inner.numStart = n_starts
for start_idx in range(n_starts):
self.inner.params.startNumber = start_idx
for (var_idx, var_name) in enumerate(var_names):
for var_idx, var_name in enumerate(var_names):
var_val = var_values[start_idx, var_idx]
if np.isfinite(var_val):
var = self.inner.getVarByName(var_name.decode())
@ -243,14 +243,14 @@ class GurobiModel(AbstractModel):
def _extract_after_load_vars(self, h5: H5File) -> None:
gp_vars = self.inner.getVars()
for (h5_field, gp_field) in {
for h5_field, gp_field in {
"static_var_names": "varName",
"static_var_types": "vtype",
}.items():
h5.put_array(
h5_field, np.array(self.inner.getAttr(gp_field, gp_vars), dtype="S")
)
for (h5_field, gp_field) in {
for h5_field, gp_field in {
"static_var_upper_bounds": "ub",
"static_var_lower_bounds": "lb",
"static_var_obj_coeffs": "obj",
@ -267,7 +267,7 @@ class GurobiModel(AbstractModel):
names = np.array(self.inner.getAttr("constrName", gp_constrs), dtype="S")
nrows, ncols = len(gp_constrs), len(gp_vars)
tmp = lil_matrix((nrows, ncols), dtype=float)
for (i, gp_constr) in enumerate(gp_constrs):
for i, gp_constr in enumerate(gp_constrs):
expr = self.inner.getRow(gp_constr)
for j in range(expr.size()):
tmp[i, expr.getVar(j).index] = expr.getCoeff(j)
@ -302,7 +302,7 @@ class GurobiModel(AbstractModel):
dtype="S",
),
)
for (h5_field, gp_field) in {
for h5_field, gp_field in {
"lp_var_reduced_costs": "rc",
"lp_var_sa_obj_up": "saobjUp",
"lp_var_sa_obj_down": "saobjLow",
@ -336,7 +336,7 @@ class GurobiModel(AbstractModel):
dtype="S",
),
)
for (h5_field, gp_field) in {
for h5_field, gp_field in {
"lp_constr_dual_values": "pi",
"lp_constr_sa_rhs_up": "saRhsUp",
"lp_constr_sa_rhs_down": "saRhsLow",

@ -141,7 +141,7 @@ class PyomoModel(AbstractModel):
stats: Optional[Dict] = None,
) -> None:
variables = self._var_names_to_vars(var_names)
for (var, val) in zip(variables, var_values):
for var, val in zip(variables, var_values):
if np.isfinite(val):
var.fix(val)
self.solver.update_var(var)
@ -195,7 +195,7 @@ class PyomoModel(AbstractModel):
assert var_names.shape[0] == n_vars
assert n_starts == 1, "Pyomo does not support multiple warm starts"
variables = self._var_names_to_vars(var_names)
for (var, val) in zip(variables, var_values[0, :]):
for var, val in zip(variables, var_values[0, :]):
if np.isfinite(val):
var.value = val
self._is_warm_start_available = True
@ -215,7 +215,7 @@ class PyomoModel(AbstractModel):
obj_count += 1
assert obj_count == 1, f"One objective function expected; found {obj_count}"
for (i, var) in enumerate(self.inner.component_objects(pyomo.core.Var)):
for i, var in enumerate(self.inner.component_objects(pyomo.core.Var)):
for idx in var:
v = var[idx]
@ -316,9 +316,7 @@ class PyomoModel(AbstractModel):
raise Exception(f"Unknown expression type: {expr.__class__.__name__}")
curr_row = 0
for (i, constr) in enumerate(
self.inner.component_objects(pyomo.core.Constraint)
):
for i, constr in enumerate(self.inner.component_objects(pyomo.core.Constraint)):
if len(constr) > 1:
for idx in constr:
names.append(constr[idx].name)

@ -62,7 +62,7 @@ def test_usage_stab(
stab_pyo_h5: List[str],
default_extractor: FeaturesExtractor,
) -> None:
for (h5, build_model) in [
for h5, build_model in [
(stab_pyo_h5, build_stab_model_pyomo),
(stab_gp_h5, build_stab_model_gurobipy),
]:

@ -56,7 +56,7 @@ def test_usage_tsp(
tsp_pyo_h5: List[str],
default_extractor: FeaturesExtractor,
) -> None:
for (h5, build_model) in [
for h5, build_model in [
(tsp_pyo_h5, build_tsp_model_pyomo),
(tsp_gp_h5, build_tsp_model_gurobipy),
]:

@ -5,7 +5,11 @@
import numpy as np
from scipy.stats import uniform, randint
from miplearn.problems.binpack import build_binpack_model, BinPackData, BinPackGenerator
from miplearn.problems.binpack import (
build_binpack_model_gurobipy,
BinPackData,
BinPackGenerator,
)
def test_binpack_generator() -> None:
@ -48,7 +52,7 @@ def test_binpack_generator() -> None:
def test_binpack() -> None:
model = build_binpack_model(
model = build_binpack_model_gurobipy(
BinPackData(
sizes=np.array([4, 8, 1, 4, 2, 1]),
capacity=10,

@ -8,7 +8,7 @@ from scipy.stats import uniform, randint
from miplearn.problems.multiknapsack import (
MultiKnapsackGenerator,
MultiKnapsackData,
build_multiknapsack_model,
build_multiknapsack_model_gurobipy,
)
@ -56,6 +56,6 @@ def test_knapsack_model() -> None:
]
),
)
model = build_multiknapsack_model(data)
model = build_multiknapsack_model_gurobipy(data)
model.optimize()
assert model.inner.objVal == -460.0

@ -5,7 +5,7 @@
import numpy as np
from scipy.stats import uniform, randint
from miplearn.problems.pmedian import PMedianGenerator, build_pmedian_model
from miplearn.problems.pmedian import PMedianGenerator, build_pmedian_model_gurobipy
def test_pmedian() -> None:
@ -46,7 +46,7 @@ def test_pmedian() -> None:
[31.95, 17.05, 67.62, 58.88, 0.0],
]
model = build_pmedian_model(data[0])
model = build_pmedian_model_gurobipy(data[0])
assert model.inner.numVars == 30
assert model.inner.numConstrs == 11
model.optimize()

@ -6,7 +6,7 @@ import numpy as np
from miplearn.problems.setpack import (
SetPackData,
build_setpack_model,
build_setpack_model_gurobipy,
)
@ -21,6 +21,6 @@ def test_setpack() -> None:
],
),
)
model = build_setpack_model(data)
model = build_setpack_model_gurobipy(data)
model.optimize()
assert model.inner.objval == -22.0

@ -7,7 +7,7 @@ from scipy.stats import uniform, randint
from miplearn.problems.uc import (
UnitCommitmentData,
build_uc_model,
build_uc_model_gurobipy,
UnitCommitmentGenerator,
)
@ -60,12 +60,12 @@ def test_uc() -> None:
cost_prod=np.array([1.0, 1.25, 1.5]),
cost_fixed=np.array([10, 12, 9]),
)
model = build_uc_model(data)
model = build_uc_model_gurobipy(data)
model.optimize()
assert model.inner.objVal == 154.5
if __name__ == "__main__":
data = UnitCommitmentGenerator().generate(1)[0]
model = build_uc_model(data)
model = build_uc_model_gurobipy(data)
model.optimize()

@ -7,7 +7,7 @@ import numpy as np
from miplearn.problems.vertexcover import (
MinWeightVertexCoverData,
build_vertexcover_model,
build_vertexcover_model_gurobipy,
)
@ -16,6 +16,6 @@ def test_stab() -> None:
graph=nx.cycle_graph(5),
weights=np.array([1.0, 1.0, 1.0, 1.0, 1.0]),
)
model = build_vertexcover_model(data)
model = build_vertexcover_model_gurobipy(data)
model.optimize()
assert model.inner.objVal == 3.0

Loading…
Cancel
Save