mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
LazyDynamic: Rewrite fit method
This commit is contained in:
@@ -4,7 +4,7 @@
|
|||||||
|
|
||||||
import logging
|
import logging
|
||||||
import sys
|
import sys
|
||||||
from typing import Any, Dict
|
from typing import Any, Dict, List, TYPE_CHECKING, Set, Hashable
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from tqdm.auto import tqdm
|
from tqdm.auto import tqdm
|
||||||
@@ -14,9 +14,13 @@ from miplearn.classifiers.counting import CountingClassifier
|
|||||||
from miplearn.components import classifier_evaluation_dict
|
from miplearn.components import classifier_evaluation_dict
|
||||||
from miplearn.components.component import Component
|
from miplearn.components.component import Component
|
||||||
from miplearn.extractors import InstanceFeaturesExtractor
|
from miplearn.extractors import InstanceFeaturesExtractor
|
||||||
|
from miplearn.features import TrainingSample
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from miplearn.solvers.learning import LearningSolver, Instance
|
||||||
|
|
||||||
|
|
||||||
class DynamicLazyConstraintsComponent(Component):
|
class DynamicLazyConstraintsComponent(Component):
|
||||||
"""
|
"""
|
||||||
@@ -32,6 +36,7 @@ class DynamicLazyConstraintsComponent(Component):
|
|||||||
self.threshold: float = threshold
|
self.threshold: float = threshold
|
||||||
self.classifier_prototype: Classifier = classifier
|
self.classifier_prototype: Classifier = classifier
|
||||||
self.classifiers: Dict[Any, Classifier] = {}
|
self.classifiers: Dict[Any, Classifier] = {}
|
||||||
|
self.known_cids: List[str] = []
|
||||||
|
|
||||||
def before_solve_mip(
|
def before_solve_mip(
|
||||||
self,
|
self,
|
||||||
@@ -119,3 +124,50 @@ class DynamicLazyConstraintsComponent(Component):
|
|||||||
fn = len(pred_negative & condition_positive)
|
fn = len(pred_negative & condition_positive)
|
||||||
results[idx] = classifier_evaluation_dict(tp, tn, fp, fn)
|
results[idx] = classifier_evaluation_dict(tp, tn, fp, fn)
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
def fit_new(self, training_instances: List["Instance"]) -> None:
|
||||||
|
# Update known_cids
|
||||||
|
self.known_cids.clear()
|
||||||
|
for instance in training_instances:
|
||||||
|
for sample in instance.training_data:
|
||||||
|
if sample.lazy_enforced is None:
|
||||||
|
continue
|
||||||
|
self.known_cids += list(sample.lazy_enforced)
|
||||||
|
self.known_cids = sorted(set(self.known_cids))
|
||||||
|
|
||||||
|
# Build x and y matrices
|
||||||
|
x: Dict[Hashable, List[List[float]]] = {}
|
||||||
|
y: Dict[Hashable, List[List[bool]]] = {}
|
||||||
|
for instance in training_instances:
|
||||||
|
for sample in instance.training_data:
|
||||||
|
if sample.lazy_enforced is None:
|
||||||
|
continue
|
||||||
|
for cid in self.known_cids:
|
||||||
|
category = instance.get_constraint_category(cid)
|
||||||
|
if category is None:
|
||||||
|
continue
|
||||||
|
if category not in x:
|
||||||
|
x[category] = []
|
||||||
|
y[category] = []
|
||||||
|
assert instance.features.instance is not None
|
||||||
|
assert instance.features.instance.user_features is not None
|
||||||
|
cfeatures = instance.get_constraint_features(cid)
|
||||||
|
assert cfeatures is not None
|
||||||
|
assert isinstance(cfeatures, list)
|
||||||
|
for ci in cfeatures:
|
||||||
|
assert isinstance(ci, float)
|
||||||
|
f = list(instance.features.instance.user_features)
|
||||||
|
f += cfeatures
|
||||||
|
x[category] += [f]
|
||||||
|
if cid in sample.lazy_enforced:
|
||||||
|
y[category] += [[False, True]]
|
||||||
|
else:
|
||||||
|
y[category] += [[True, False]]
|
||||||
|
|
||||||
|
# Train classifiers
|
||||||
|
for category in x.keys():
|
||||||
|
self.classifiers[category] = self.classifier_prototype.clone()
|
||||||
|
self.classifiers[category].fit(
|
||||||
|
np.array(x[category]),
|
||||||
|
np.array(y[category]),
|
||||||
|
)
|
||||||
|
|||||||
@@ -119,7 +119,7 @@ class Instance(ABC):
|
|||||||
def get_constraint_features(self, cid: str) -> Optional[List[float]]:
|
def get_constraint_features(self, cid: str) -> Optional[List[float]]:
|
||||||
return [0.0]
|
return [0.0]
|
||||||
|
|
||||||
def get_constraint_category(self, cid: str) -> Optional[str]:
|
def get_constraint_category(self, cid: str) -> Optional[Hashable]:
|
||||||
return cid
|
return cid
|
||||||
|
|
||||||
def has_static_lazy_constraints(self) -> bool:
|
def has_static_lazy_constraints(self) -> bool:
|
||||||
@@ -243,7 +243,7 @@ class PickleGzInstance(Instance):
|
|||||||
return self.instance.get_constraint_features(cid)
|
return self.instance.get_constraint_features(cid)
|
||||||
|
|
||||||
@lazy_load
|
@lazy_load
|
||||||
def get_constraint_category(self, cid: str) -> Optional[str]:
|
def get_constraint_category(self, cid: str) -> Optional[Hashable]:
|
||||||
assert self.instance is not None
|
assert self.instance is not None
|
||||||
return self.instance.get_constraint_category(cid)
|
return self.instance.get_constraint_category(cid)
|
||||||
|
|
||||||
|
|||||||
@@ -1,15 +1,23 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
from typing import List, cast
|
||||||
from unittest.mock import Mock
|
from unittest.mock import Mock
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import pytest
|
||||||
from numpy.linalg import norm
|
from numpy.linalg import norm
|
||||||
from numpy.testing import assert_array_equal
|
from numpy.testing import assert_array_equal
|
||||||
|
|
||||||
|
from miplearn import Instance
|
||||||
from miplearn.classifiers import Classifier
|
from miplearn.classifiers import Classifier
|
||||||
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
|
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
|
||||||
|
from miplearn.features import (
|
||||||
|
TrainingSample,
|
||||||
|
Features,
|
||||||
|
ConstraintFeatures,
|
||||||
|
InstanceFeatures,
|
||||||
|
)
|
||||||
from miplearn.solvers.internal import InternalSolver
|
from miplearn.solvers.internal import InternalSolver
|
||||||
from miplearn.solvers.learning import LearningSolver
|
from miplearn.solvers.learning import LearningSolver
|
||||||
from tests.fixtures.knapsack import get_test_pyomo_instances
|
from tests.fixtures.knapsack import get_test_pyomo_instances
|
||||||
@@ -171,3 +179,123 @@ def test_lazy_evaluate():
|
|||||||
"True positive (%)": 25.0,
|
"True positive (%)": 25.0,
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def training_instances() -> List[Instance]:
|
||||||
|
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
|
||||||
|
instances[0].features = Features(
|
||||||
|
instance=InstanceFeatures(
|
||||||
|
user_features=[50.0],
|
||||||
|
),
|
||||||
|
)
|
||||||
|
instances[0].training_data = [
|
||||||
|
TrainingSample(lazy_enforced={"c1", "c2"}),
|
||||||
|
TrainingSample(lazy_enforced={"c2", "c3"}),
|
||||||
|
]
|
||||||
|
instances[0].get_constraint_category = Mock( # type: ignore
|
||||||
|
side_effect=lambda cid: {
|
||||||
|
"c1": "type-a",
|
||||||
|
"c2": "type-a",
|
||||||
|
"c3": "type-b",
|
||||||
|
"c4": "type-b",
|
||||||
|
}[cid]
|
||||||
|
)
|
||||||
|
instances[0].get_constraint_features = Mock( # type: ignore
|
||||||
|
side_effect=lambda cid: {
|
||||||
|
"c1": [1.0, 2.0, 3.0],
|
||||||
|
"c2": [4.0, 5.0, 6.0],
|
||||||
|
"c3": [1.0, 2.0],
|
||||||
|
"c4": [3.0, 4.0],
|
||||||
|
}[cid]
|
||||||
|
)
|
||||||
|
instances[1].features = Features(
|
||||||
|
instance=InstanceFeatures(
|
||||||
|
user_features=[80.0],
|
||||||
|
),
|
||||||
|
)
|
||||||
|
instances[1].training_data = [
|
||||||
|
TrainingSample(lazy_enforced={"c3", "c4"}),
|
||||||
|
]
|
||||||
|
instances[1].get_constraint_category = Mock( # type: ignore
|
||||||
|
side_effect=lambda cid: {
|
||||||
|
"c1": None,
|
||||||
|
"c2": "type-a",
|
||||||
|
"c3": "type-b",
|
||||||
|
"c4": "type-b",
|
||||||
|
}[cid]
|
||||||
|
)
|
||||||
|
instances[1].get_constraint_features = Mock( # type: ignore
|
||||||
|
side_effect=lambda cid: {
|
||||||
|
"c2": [7.0, 8.0, 9.0],
|
||||||
|
"c3": [5.0, 6.0],
|
||||||
|
"c4": [7.0, 8.0],
|
||||||
|
}[cid]
|
||||||
|
)
|
||||||
|
return instances
|
||||||
|
|
||||||
|
|
||||||
|
def test_fit_new(training_instances: List[Instance]) -> None:
|
||||||
|
clf = Mock(spec=Classifier)
|
||||||
|
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
|
||||||
|
comp = DynamicLazyConstraintsComponent(classifier=clf)
|
||||||
|
comp.fit_new(training_instances)
|
||||||
|
assert clf.clone.call_count == 2
|
||||||
|
|
||||||
|
assert "type-a" in comp.classifiers
|
||||||
|
clf_a = comp.classifiers["type-a"]
|
||||||
|
assert clf_a.fit.call_count == 1 # type: ignore
|
||||||
|
assert_array_equal(
|
||||||
|
clf_a.fit.call_args[0][0], # type: ignore
|
||||||
|
np.array(
|
||||||
|
[
|
||||||
|
[50.0, 1.0, 2.0, 3.0],
|
||||||
|
[50.0, 4.0, 5.0, 6.0],
|
||||||
|
[50.0, 1.0, 2.0, 3.0],
|
||||||
|
[50.0, 4.0, 5.0, 6.0],
|
||||||
|
[80.0, 7.0, 8.0, 9.0],
|
||||||
|
]
|
||||||
|
),
|
||||||
|
)
|
||||||
|
assert_array_equal(
|
||||||
|
clf_a.fit.call_args[0][1], # type: ignore
|
||||||
|
np.array(
|
||||||
|
[
|
||||||
|
[False, True],
|
||||||
|
[False, True],
|
||||||
|
[True, False],
|
||||||
|
[False, True],
|
||||||
|
[True, False],
|
||||||
|
]
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
assert "type-b" in comp.classifiers
|
||||||
|
clf_b = comp.classifiers["type-b"]
|
||||||
|
assert clf_b.fit.call_count == 1 # type: ignore
|
||||||
|
assert_array_equal(
|
||||||
|
clf_b.fit.call_args[0][0], # type: ignore
|
||||||
|
np.array(
|
||||||
|
[
|
||||||
|
[50.0, 1.0, 2.0],
|
||||||
|
[50.0, 3.0, 4.0],
|
||||||
|
[50.0, 1.0, 2.0],
|
||||||
|
[50.0, 3.0, 4.0],
|
||||||
|
[80.0, 5.0, 6.0],
|
||||||
|
[80.0, 7.0, 8.0],
|
||||||
|
]
|
||||||
|
),
|
||||||
|
)
|
||||||
|
assert_array_equal(
|
||||||
|
clf_b.fit.call_args[0][1], # type: ignore
|
||||||
|
np.array(
|
||||||
|
[
|
||||||
|
[True, False],
|
||||||
|
[True, False],
|
||||||
|
[False, True],
|
||||||
|
[True, False],
|
||||||
|
[False, True],
|
||||||
|
[False, True],
|
||||||
|
]
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|||||||
Reference in New Issue
Block a user