mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
LazyDynamic: Rewrite fit method
This commit is contained in:
@@ -4,7 +4,7 @@
|
||||
|
||||
import logging
|
||||
import sys
|
||||
from typing import Any, Dict
|
||||
from typing import Any, Dict, List, TYPE_CHECKING, Set, Hashable
|
||||
|
||||
import numpy as np
|
||||
from tqdm.auto import tqdm
|
||||
@@ -14,9 +14,13 @@ from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.extractors import InstanceFeaturesExtractor
|
||||
from miplearn.features import TrainingSample
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from miplearn.solvers.learning import LearningSolver, Instance
|
||||
|
||||
|
||||
class DynamicLazyConstraintsComponent(Component):
|
||||
"""
|
||||
@@ -32,6 +36,7 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
self.threshold: float = threshold
|
||||
self.classifier_prototype: Classifier = classifier
|
||||
self.classifiers: Dict[Any, Classifier] = {}
|
||||
self.known_cids: List[str] = []
|
||||
|
||||
def before_solve_mip(
|
||||
self,
|
||||
@@ -119,3 +124,50 @@ class DynamicLazyConstraintsComponent(Component):
|
||||
fn = len(pred_negative & condition_positive)
|
||||
results[idx] = classifier_evaluation_dict(tp, tn, fp, fn)
|
||||
return results
|
||||
|
||||
def fit_new(self, training_instances: List["Instance"]) -> None:
|
||||
# Update known_cids
|
||||
self.known_cids.clear()
|
||||
for instance in training_instances:
|
||||
for sample in instance.training_data:
|
||||
if sample.lazy_enforced is None:
|
||||
continue
|
||||
self.known_cids += list(sample.lazy_enforced)
|
||||
self.known_cids = sorted(set(self.known_cids))
|
||||
|
||||
# Build x and y matrices
|
||||
x: Dict[Hashable, List[List[float]]] = {}
|
||||
y: Dict[Hashable, List[List[bool]]] = {}
|
||||
for instance in training_instances:
|
||||
for sample in instance.training_data:
|
||||
if sample.lazy_enforced is None:
|
||||
continue
|
||||
for cid in self.known_cids:
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
y[category] = []
|
||||
assert instance.features.instance is not None
|
||||
assert instance.features.instance.user_features is not None
|
||||
cfeatures = instance.get_constraint_features(cid)
|
||||
assert cfeatures is not None
|
||||
assert isinstance(cfeatures, list)
|
||||
for ci in cfeatures:
|
||||
assert isinstance(ci, float)
|
||||
f = list(instance.features.instance.user_features)
|
||||
f += cfeatures
|
||||
x[category] += [f]
|
||||
if cid in sample.lazy_enforced:
|
||||
y[category] += [[False, True]]
|
||||
else:
|
||||
y[category] += [[True, False]]
|
||||
|
||||
# Train classifiers
|
||||
for category in x.keys():
|
||||
self.classifiers[category] = self.classifier_prototype.clone()
|
||||
self.classifiers[category].fit(
|
||||
np.array(x[category]),
|
||||
np.array(y[category]),
|
||||
)
|
||||
|
||||
@@ -119,7 +119,7 @@ class Instance(ABC):
|
||||
def get_constraint_features(self, cid: str) -> Optional[List[float]]:
|
||||
return [0.0]
|
||||
|
||||
def get_constraint_category(self, cid: str) -> Optional[str]:
|
||||
def get_constraint_category(self, cid: str) -> Optional[Hashable]:
|
||||
return cid
|
||||
|
||||
def has_static_lazy_constraints(self) -> bool:
|
||||
@@ -243,7 +243,7 @@ class PickleGzInstance(Instance):
|
||||
return self.instance.get_constraint_features(cid)
|
||||
|
||||
@lazy_load
|
||||
def get_constraint_category(self, cid: str) -> Optional[str]:
|
||||
def get_constraint_category(self, cid: str) -> Optional[Hashable]:
|
||||
assert self.instance is not None
|
||||
return self.instance.get_constraint_category(cid)
|
||||
|
||||
|
||||
@@ -1,15 +1,23 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import List, cast
|
||||
from unittest.mock import Mock
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpy.linalg import norm
|
||||
from numpy.testing import assert_array_equal
|
||||
|
||||
from miplearn import Instance
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
|
||||
from miplearn.features import (
|
||||
TrainingSample,
|
||||
Features,
|
||||
ConstraintFeatures,
|
||||
InstanceFeatures,
|
||||
)
|
||||
from miplearn.solvers.internal import InternalSolver
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
from tests.fixtures.knapsack import get_test_pyomo_instances
|
||||
@@ -171,3 +179,123 @@ def test_lazy_evaluate():
|
||||
"True positive (%)": 25.0,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def training_instances() -> List[Instance]:
|
||||
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
|
||||
instances[0].features = Features(
|
||||
instance=InstanceFeatures(
|
||||
user_features=[50.0],
|
||||
),
|
||||
)
|
||||
instances[0].training_data = [
|
||||
TrainingSample(lazy_enforced={"c1", "c2"}),
|
||||
TrainingSample(lazy_enforced={"c2", "c3"}),
|
||||
]
|
||||
instances[0].get_constraint_category = Mock( # type: ignore
|
||||
side_effect=lambda cid: {
|
||||
"c1": "type-a",
|
||||
"c2": "type-a",
|
||||
"c3": "type-b",
|
||||
"c4": "type-b",
|
||||
}[cid]
|
||||
)
|
||||
instances[0].get_constraint_features = Mock( # type: ignore
|
||||
side_effect=lambda cid: {
|
||||
"c1": [1.0, 2.0, 3.0],
|
||||
"c2": [4.0, 5.0, 6.0],
|
||||
"c3": [1.0, 2.0],
|
||||
"c4": [3.0, 4.0],
|
||||
}[cid]
|
||||
)
|
||||
instances[1].features = Features(
|
||||
instance=InstanceFeatures(
|
||||
user_features=[80.0],
|
||||
),
|
||||
)
|
||||
instances[1].training_data = [
|
||||
TrainingSample(lazy_enforced={"c3", "c4"}),
|
||||
]
|
||||
instances[1].get_constraint_category = Mock( # type: ignore
|
||||
side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
"c2": "type-a",
|
||||
"c3": "type-b",
|
||||
"c4": "type-b",
|
||||
}[cid]
|
||||
)
|
||||
instances[1].get_constraint_features = Mock( # type: ignore
|
||||
side_effect=lambda cid: {
|
||||
"c2": [7.0, 8.0, 9.0],
|
||||
"c3": [5.0, 6.0],
|
||||
"c4": [7.0, 8.0],
|
||||
}[cid]
|
||||
)
|
||||
return instances
|
||||
|
||||
|
||||
def test_fit_new(training_instances: List[Instance]) -> None:
|
||||
clf = Mock(spec=Classifier)
|
||||
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
|
||||
comp = DynamicLazyConstraintsComponent(classifier=clf)
|
||||
comp.fit_new(training_instances)
|
||||
assert clf.clone.call_count == 2
|
||||
|
||||
assert "type-a" in comp.classifiers
|
||||
clf_a = comp.classifiers["type-a"]
|
||||
assert clf_a.fit.call_count == 1 # type: ignore
|
||||
assert_array_equal(
|
||||
clf_a.fit.call_args[0][0], # type: ignore
|
||||
np.array(
|
||||
[
|
||||
[50.0, 1.0, 2.0, 3.0],
|
||||
[50.0, 4.0, 5.0, 6.0],
|
||||
[50.0, 1.0, 2.0, 3.0],
|
||||
[50.0, 4.0, 5.0, 6.0],
|
||||
[80.0, 7.0, 8.0, 9.0],
|
||||
]
|
||||
),
|
||||
)
|
||||
assert_array_equal(
|
||||
clf_a.fit.call_args[0][1], # type: ignore
|
||||
np.array(
|
||||
[
|
||||
[False, True],
|
||||
[False, True],
|
||||
[True, False],
|
||||
[False, True],
|
||||
[True, False],
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
assert "type-b" in comp.classifiers
|
||||
clf_b = comp.classifiers["type-b"]
|
||||
assert clf_b.fit.call_count == 1 # type: ignore
|
||||
assert_array_equal(
|
||||
clf_b.fit.call_args[0][0], # type: ignore
|
||||
np.array(
|
||||
[
|
||||
[50.0, 1.0, 2.0],
|
||||
[50.0, 3.0, 4.0],
|
||||
[50.0, 1.0, 2.0],
|
||||
[50.0, 3.0, 4.0],
|
||||
[80.0, 5.0, 6.0],
|
||||
[80.0, 7.0, 8.0],
|
||||
]
|
||||
),
|
||||
)
|
||||
assert_array_equal(
|
||||
clf_b.fit.call_args[0][1], # type: ignore
|
||||
np.array(
|
||||
[
|
||||
[True, False],
|
||||
[True, False],
|
||||
[False, True],
|
||||
[True, False],
|
||||
[False, True],
|
||||
[False, True],
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user