mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Document InternalSolver; only traverse list of variables once
This commit is contained in:
@@ -3,14 +3,19 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from abc import ABC
|
||||
from copy import deepcopy
|
||||
|
||||
import pyomo.core.kernel.objective
|
||||
import pyomo.environ as pe
|
||||
from p_tqdm import p_map
|
||||
from pyomo.core import Var
|
||||
from scipy.stats import randint
|
||||
|
||||
from . import ObjectiveValueComponent, PrimalSolutionComponent, LazyConstraintsComponent
|
||||
from . import (ObjectiveValueComponent,
|
||||
PrimalSolutionComponent,
|
||||
LazyConstraintsComponent)
|
||||
from .instance import Instance
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -35,51 +40,68 @@ def _parallel_solve(instance_idx):
|
||||
}
|
||||
|
||||
|
||||
class InternalSolver:
|
||||
class InternalSolver(ABC):
|
||||
"""
|
||||
The MIP solver used internaly by LearningSolver.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
instance: miplearn.Instance
|
||||
The MIPLearn instance currently loaded to the solver
|
||||
model: pyomo.core.ConcreteModel
|
||||
The Pyomo model currently loaded on the solver
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.all_vars = None
|
||||
self.instance = None
|
||||
self.is_warm_start_available = False
|
||||
self.solver = None
|
||||
self.model = None
|
||||
self.sense = None
|
||||
self.var_name_to_var = {}
|
||||
self._all_vars = None
|
||||
self._bin_vars = None
|
||||
self._is_warm_start_available = False
|
||||
self._pyomo_solver = None
|
||||
self._obj_sense = None
|
||||
self._varname_to_var = {}
|
||||
|
||||
def solve_lp(self, tee=False):
|
||||
# Relax domain
|
||||
from pyomo.core.base.set_types import Reals, Binary
|
||||
original_domains = []
|
||||
for (idx, var) in enumerate(self.model.component_data_objects(Var)):
|
||||
original_domains += [var.domain]
|
||||
"""
|
||||
Solves the LP relaxation of the currently loaded instance.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
tee: bool
|
||||
If true, prints the solver log to the screen.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
A dictionary of solver statistics containing the following keys:
|
||||
"Optimal value".
|
||||
"""
|
||||
for var in self._bin_vars:
|
||||
lb, ub = var.bounds
|
||||
if var.domain == Binary:
|
||||
var.domain = Reals
|
||||
var.setlb(lb)
|
||||
var.setub(ub)
|
||||
self.solver.update_var(var)
|
||||
|
||||
# Solve LP relaxation
|
||||
results = self.solver.solve(tee=tee)
|
||||
|
||||
# Restore domains
|
||||
for (idx, var) in enumerate(self.model.component_data_objects(Var)):
|
||||
if original_domains[idx] == Binary:
|
||||
var.domain = original_domains[idx]
|
||||
self.solver.update_var(var)
|
||||
|
||||
var.domain = pyomo.core.base.set_types.Reals
|
||||
self._pyomo_solver.update_var(var)
|
||||
results = self._pyomo_solver.solve(tee=tee)
|
||||
for var in self._bin_vars:
|
||||
var.domain = pyomo.core.base.set_types.Binary
|
||||
self._pyomo_solver.update_var(var)
|
||||
return {
|
||||
"Optimal value": results["Problem"][0]["Lower bound"],
|
||||
}
|
||||
|
||||
def clear_values(self):
|
||||
for var in self.model.component_objects(Var):
|
||||
for index in var:
|
||||
if var[index].fixed:
|
||||
continue
|
||||
var[index].value = None
|
||||
self.is_warm_start_available = False
|
||||
|
||||
def get_solution(self):
|
||||
"""
|
||||
Returns current solution found by the solver.
|
||||
|
||||
If called after `solve`, returns the best primal solution found during
|
||||
the search. If called after `solve_lp`, returns the optimal solution
|
||||
to the LP relaxation.
|
||||
|
||||
The solution is a dictionary `sol`, where the optimal value of `var[idx]`
|
||||
is given by `sol[var][idx]`.
|
||||
"""
|
||||
solution = {}
|
||||
for var in self.model.component_objects(Var):
|
||||
solution[str(var)] = {}
|
||||
@@ -88,60 +110,120 @@ class InternalSolver:
|
||||
return solution
|
||||
|
||||
def set_warm_start(self, solution):
|
||||
self.clear_values()
|
||||
"""
|
||||
Sets the warm start to be used by the solver.
|
||||
|
||||
The solution should be a dictionary following the same format as the
|
||||
one produced by `get_solution`. Only one warm start is currently
|
||||
supported. Calling this function when a warm start already exists will
|
||||
remove the previous warm start.
|
||||
"""
|
||||
self.clear_warm_start()
|
||||
count_total, count_fixed = 0, 0
|
||||
for var_name in solution:
|
||||
var = self.var_name_to_var[var_name]
|
||||
var = self._varname_to_var[var_name]
|
||||
for index in solution[var_name]:
|
||||
count_total += 1
|
||||
var[index].value = solution[var_name][index]
|
||||
if solution[var_name][index] is not None:
|
||||
count_fixed += 1
|
||||
if count_fixed > 0:
|
||||
self.is_warm_start_available = True
|
||||
self._is_warm_start_available = True
|
||||
logger.info("Setting start values for %d variables (out of %d)" %
|
||||
(count_fixed, count_total))
|
||||
|
||||
def set_model(self, model):
|
||||
from pyomo.core.kernel.objective import minimize
|
||||
self.model = model
|
||||
self.solver.set_instance(model)
|
||||
if self.solver._objective.sense == minimize:
|
||||
self.sense = "min"
|
||||
else:
|
||||
self.sense = "max"
|
||||
self.var_name_to_var = {}
|
||||
self.all_vars = []
|
||||
for var in model.component_objects(Var):
|
||||
self.var_name_to_var[var.name] = var
|
||||
self.all_vars += [var[idx] for idx in var]
|
||||
def clear_warm_start(self):
|
||||
"""
|
||||
Removes any existing warm start from the solver.
|
||||
"""
|
||||
for var in self._all_vars:
|
||||
if not var.fixed:
|
||||
var.value = None
|
||||
self._is_warm_start_available = False
|
||||
|
||||
def set_instance(self, instance):
|
||||
def set_instance(self, instance, model=None):
|
||||
"""
|
||||
Loads the given instance into the solver.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
instance: miplearn.Instance
|
||||
The instance to be loaded.
|
||||
model: pyomo.core.ConcreteModel
|
||||
The corresponding Pyomo model. If not provided, it will be
|
||||
generated by calling `instance.to_model()`.
|
||||
"""
|
||||
if model is None:
|
||||
model = instance.to_model()
|
||||
assert isinstance(instance, Instance)
|
||||
assert isinstance(model, pe.ConcreteModel)
|
||||
self.instance = instance
|
||||
self.model = model
|
||||
self._pyomo_solver.set_instance(model)
|
||||
|
||||
# Update objective sense
|
||||
self._obj_sense = "max"
|
||||
if self._pyomo_solver._objective.sense == pyomo.core.kernel.objective.minimize:
|
||||
self._obj_sense = "min"
|
||||
|
||||
# Update variables
|
||||
self._all_vars = []
|
||||
self._bin_vars = []
|
||||
self._varname_to_var = {}
|
||||
for var in model.component_objects(Var):
|
||||
self._varname_to_var[var.name] = var
|
||||
for idx in var:
|
||||
self._all_vars += [var[idx]]
|
||||
if var[idx].domain == pyomo.core.base.set_types.Binary:
|
||||
self._bin_vars += [var[idx]]
|
||||
|
||||
def fix(self, solution):
|
||||
"""
|
||||
Fixes the values of a subset of decision variables.
|
||||
|
||||
The values should be provided in the dictionary format generated by
|
||||
`get_solution`. Missing values in the solution indicate variables
|
||||
that should be left free.
|
||||
"""
|
||||
count_total, count_fixed = 0, 0
|
||||
for var_name in solution:
|
||||
for index in solution[var_name]:
|
||||
var = self.var_name_to_var[var_name]
|
||||
for varname in solution:
|
||||
for index in solution[varname]:
|
||||
var = self._varname_to_var[varname]
|
||||
count_total += 1
|
||||
if solution[var_name][index] is None:
|
||||
if solution[varname][index] is None:
|
||||
continue
|
||||
count_fixed += 1
|
||||
var[index].fix(solution[var_name][index])
|
||||
self.solver.update_var(var[index])
|
||||
var[index].fix(solution[varname][index])
|
||||
self._pyomo_solver.update_var(var[index])
|
||||
logger.info("Fixing values for %d variables (out of %d)" %
|
||||
(count_fixed, count_total))
|
||||
|
||||
def add_constraint(self, cut):
|
||||
self.solver.add_constraint(cut)
|
||||
def add_constraint(self, constraint):
|
||||
"""
|
||||
Adds a single constraint to the model.
|
||||
"""
|
||||
self._pyomo_solver.add_constraint(constraint)
|
||||
|
||||
def solve(self, tee=False):
|
||||
"""
|
||||
Solves the currently loaded instance.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
tee: bool
|
||||
If true, prints the solver log to the screen.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
A dictionary of solver statistics containing the following keys:
|
||||
"Lower bound", "Upper bound", "Wallclock time", "Nodes" and "Sense".
|
||||
"""
|
||||
total_wallclock_time = 0
|
||||
self.instance.found_violations = []
|
||||
while True:
|
||||
logger.debug("Solving MIP...")
|
||||
results = self.solver.solve(tee=tee)
|
||||
results = self._pyomo_solver.solve(tee=tee)
|
||||
total_wallclock_time += results["Solver"][0]["Wallclock time"]
|
||||
if not hasattr(self.instance, "find_violations"):
|
||||
break
|
||||
@@ -160,31 +242,31 @@ class InternalSolver:
|
||||
"Upper bound": results["Problem"][0]["Upper bound"],
|
||||
"Wallclock time": total_wallclock_time,
|
||||
"Nodes": 1,
|
||||
"Sense": self.sense,
|
||||
"Sense": self._obj_sense,
|
||||
}
|
||||
|
||||
|
||||
class GurobiSolver(InternalSolver):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.solver = pe.SolverFactory('gurobi_persistent')
|
||||
self.solver.options["Seed"] = randint(low=0, high=1000).rvs()
|
||||
self._pyomo_solver = pe.SolverFactory('gurobi_persistent')
|
||||
self._pyomo_solver.options["Seed"] = randint(low=0, high=1000).rvs()
|
||||
|
||||
def set_threads(self, threads):
|
||||
self.solver.options["Threads"] = threads
|
||||
self._pyomo_solver.options["Threads"] = threads
|
||||
|
||||
def set_time_limit(self, time_limit):
|
||||
self.solver.options["TimeLimit"] = time_limit
|
||||
self._pyomo_solver.options["TimeLimit"] = time_limit
|
||||
|
||||
def set_gap_tolerance(self, gap_tolerance):
|
||||
self.solver.options["MIPGap"] = gap_tolerance
|
||||
self._pyomo_solver.options["MIPGap"] = gap_tolerance
|
||||
|
||||
def solve(self, tee=False):
|
||||
from gurobipy import GRB
|
||||
|
||||
def cb(cb_model, cb_opt, cb_where):
|
||||
if cb_where == GRB.Callback.MIPSOL:
|
||||
cb_opt.cbGetSolution(self.all_vars)
|
||||
cb_opt.cbGetSolution(self._all_vars)
|
||||
logger.debug("Finding violated constraints...")
|
||||
violations = self.instance.find_violations(cb_model)
|
||||
self.instance.found_violations += violations
|
||||
@@ -194,42 +276,58 @@ class GurobiSolver(InternalSolver):
|
||||
cb_opt.cbLazy(cut)
|
||||
|
||||
if hasattr(self.instance, "find_violations"):
|
||||
self.solver.options["LazyConstraints"] = 1
|
||||
self.solver.set_callback(cb)
|
||||
self._pyomo_solver.options["LazyConstraints"] = 1
|
||||
self._pyomo_solver.set_callback(cb)
|
||||
self.instance.found_violations = []
|
||||
results = self.solver.solve(tee=tee, warmstart=self.is_warm_start_available)
|
||||
self.solver.set_callback(None)
|
||||
print(self._is_warm_start_available)
|
||||
results = self._pyomo_solver.solve(tee=tee,
|
||||
warmstart=self._is_warm_start_available)
|
||||
self._pyomo_solver.set_callback(None)
|
||||
node_count = int(self._pyomo_solver._solver_model.getAttr("NodeCount"))
|
||||
return {
|
||||
"Lower bound": results["Problem"][0]["Lower bound"],
|
||||
"Upper bound": results["Problem"][0]["Upper bound"],
|
||||
"Wallclock time": results["Solver"][0]["Wallclock time"],
|
||||
"Nodes": self.solver._solver_model.getAttr("NodeCount"),
|
||||
"Sense": self.sense,
|
||||
"Nodes": max(1, node_count),
|
||||
"Sense": self._obj_sense,
|
||||
}
|
||||
|
||||
|
||||
class CPLEXSolver(InternalSolver):
|
||||
def __init__(self):
|
||||
def __init__(self,
|
||||
presolve=1,
|
||||
mip_display=4,
|
||||
threads=None,
|
||||
time_limit=None,
|
||||
gap_tolerance=None):
|
||||
super().__init__()
|
||||
self.solver = pe.SolverFactory('cplex_persistent')
|
||||
self.solver.options["randomseed"] = randint(low=0, high=1000).rvs()
|
||||
self._pyomo_solver = pe.SolverFactory('cplex_persistent')
|
||||
self._pyomo_solver.options["randomseed"] = randint(low=0, high=1000).rvs()
|
||||
self._pyomo_solver.options["preprocessing_presolve"] = presolve
|
||||
self._pyomo_solver.options["mip_display"] = mip_display
|
||||
if threads is not None:
|
||||
self.set_threads(threads)
|
||||
if time_limit is not None:
|
||||
self.set_time_limit(time_limit)
|
||||
if gap_tolerance is not None:
|
||||
self.set_gap_tolerance(gap_tolerance)
|
||||
|
||||
def set_threads(self, threads):
|
||||
self.solver.options["threads"] = threads
|
||||
self._pyomo_solver.options["threads"] = threads
|
||||
|
||||
def set_time_limit(self, time_limit):
|
||||
self.solver.options["timelimit"] = time_limit
|
||||
self._pyomo_solver.options["timelimit"] = time_limit
|
||||
|
||||
def set_gap_tolerance(self, gap_tolerance):
|
||||
self.solver.options["mip_tolerances_mipgap"] = gap_tolerance
|
||||
self._pyomo_solver.options["mip_tolerances_mipgap"] = gap_tolerance
|
||||
|
||||
def solve_lp(self, tee=False):
|
||||
import cplex
|
||||
lp = self.solver._solver_model
|
||||
lp = self._pyomo_solver._solver_model
|
||||
var_types = lp.variables.get_types()
|
||||
n_vars = len(var_types)
|
||||
lp.set_problem_type(cplex.Cplex.problem_type.LP)
|
||||
results = self.solver.solve(tee=tee)
|
||||
results = self._pyomo_solver.solve(tee=tee)
|
||||
lp.variables.set_types(zip(range(n_vars), var_types))
|
||||
return {
|
||||
"Optimal value": results["Problem"][0]["Lower bound"],
|
||||
@@ -238,8 +336,9 @@ class CPLEXSolver(InternalSolver):
|
||||
|
||||
class LearningSolver:
|
||||
"""
|
||||
Mixed-Integer Linear Programming (MIP) solver that extracts information from previous runs,
|
||||
using Machine Learning methods, to accelerate the solution of new (yet unseen) instances.
|
||||
Mixed-Integer Linear Programming (MIP) solver that extracts information
|
||||
from previous runs, using Machine Learning methods, to accelerate the
|
||||
solution of new (yet unseen) instances.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
@@ -300,8 +399,7 @@ class LearningSolver:
|
||||
|
||||
self.tee = tee
|
||||
self.internal_solver = self._create_internal_solver()
|
||||
self.internal_solver.set_model(model)
|
||||
self.internal_solver.set_instance(instance)
|
||||
self.internal_solver.set_instance(instance, model=model)
|
||||
|
||||
logger.debug("Solving LP relaxation...")
|
||||
results = self.internal_solver.solve_lp(tee=tee)
|
||||
|
||||
@@ -5,9 +5,10 @@
|
||||
import pickle
|
||||
import tempfile
|
||||
|
||||
import pyomo.environ as pe
|
||||
from miplearn import LearningSolver, BranchPriorityComponent
|
||||
from miplearn.problems.knapsack import KnapsackInstance
|
||||
from miplearn.solvers import GurobiSolver
|
||||
from miplearn.solvers import GurobiSolver, CPLEXSolver
|
||||
|
||||
|
||||
def _get_instance():
|
||||
@@ -18,7 +19,50 @@ def _get_instance():
|
||||
)
|
||||
|
||||
|
||||
def test_solver():
|
||||
def test_internal_solver():
|
||||
for solver in [GurobiSolver(), CPLEXSolver(presolve=False)]:
|
||||
instance = _get_instance()
|
||||
model = instance.to_model()
|
||||
|
||||
solver.set_instance(instance, model)
|
||||
solver.set_warm_start({
|
||||
"x": {
|
||||
0: 1.0,
|
||||
1: 0.0,
|
||||
2: 1.0,
|
||||
3: 1.0,
|
||||
}
|
||||
})
|
||||
|
||||
stats = solver.solve()
|
||||
assert stats["Lower bound"] == 1183.0
|
||||
assert stats["Upper bound"] == 1183.0
|
||||
assert stats["Sense"] == "max"
|
||||
assert isinstance(stats["Wallclock time"], float)
|
||||
assert isinstance(stats["Nodes"], int)
|
||||
|
||||
solution = solver.get_solution()
|
||||
assert solution["x"][0] == 1.0
|
||||
assert solution["x"][1] == 0.0
|
||||
assert solution["x"][2] == 1.0
|
||||
assert solution["x"][3] == 1.0
|
||||
|
||||
stats = solver.solve_lp()
|
||||
assert round(stats["Optimal value"], 3) == 1287.923
|
||||
|
||||
solution = solver.get_solution()
|
||||
assert round(solution["x"][0], 3) == 1.000
|
||||
assert round(solution["x"][1], 3) == 0.923
|
||||
assert round(solution["x"][2], 3) == 1.000
|
||||
assert round(solution["x"][3], 3) == 0.000
|
||||
|
||||
model.cut = pe.Constraint(expr=model.x[0] <= 0.5)
|
||||
solver.add_constraint(model.cut)
|
||||
solver.solve_lp()
|
||||
assert model.x[0].value == 0.5
|
||||
|
||||
|
||||
def test_learning_solver():
|
||||
instance = _get_instance()
|
||||
for mode in ["exact", "heuristic"]:
|
||||
for internal_solver in ["cplex", "gurobi", GurobiSolver]:
|
||||
|
||||
Reference in New Issue
Block a user