Implement MemorizingLazyConstrComponent

dev
Alinson S. Xavier 2 years ago
parent 2d07a44f7d
commit c1adc0b79e
Signed by: isoron
GPG Key ID: 0DA8E4B9E1109DCA

@ -62,9 +62,7 @@ class BasicCollector:
and model.fix_violations is not None
):
model.fix_violations(model, model.violations_, "aot")
h5.put_scalar(
"mip_constr_violations", json.dumps(model.violations_)
)
h5.put_scalar("mip_constr_violations", repr(model.violations_))
# Save MPS file
model.write(mps_filename)

@ -1,117 +0,0 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from io import StringIO
from typing import Callable
import gurobipy as gp
import numpy as np
from gurobipy import GRB, LinExpr
from ..h5 import H5File
from ..io import _RedirectOutput
class LazyCollector:
def __init__(
self,
min_constrs: int = 100_000,
time_limit: float = 900,
) -> None:
self.min_constrs = min_constrs
self.time_limit = time_limit
def collect(
self, data_filename: str, build_model: Callable, tol: float = 1e-6
) -> None:
h5_filename = f"{data_filename}.h5"
with H5File(h5_filename, "r+") as h5:
streams = [StringIO()]
lazy = None
with _RedirectOutput(streams):
slacks = h5.get_array("mip_constr_slacks")
assert slacks is not None
# Check minimum problem size
if len(slacks) < self.min_constrs:
print("Problem is too small. Skipping.")
h5.put_array("mip_constr_lazy", np.zeros(len(slacks)))
return
# Load model
print("Loading model...")
model = build_model(data_filename)
model.params.LazyConstraints = True
model.params.timeLimit = self.time_limit
gp_constrs = np.array(model.getConstrs())
gp_vars = np.array(model.getVars())
# Load constraints
lhs = h5.get_sparse("static_constr_lhs")
rhs = h5.get_array("static_constr_rhs")
sense = h5.get_array("static_constr_sense")
assert lhs is not None
assert rhs is not None
assert sense is not None
lhs_csr = lhs.tocsr()
lhs_csc = lhs.tocsc()
constr_idx = np.array(range(len(rhs)))
lazy = np.zeros(len(rhs))
# Drop loose constraints
selected = (slacks > 0) & ((sense == b"<") | (sense == b">"))
loose_constrs = gp_constrs[selected]
print(
f"Removing {len(loose_constrs):,d} constraints (out of {len(rhs):,d})..."
)
model.remove(list(loose_constrs))
# Filter to constraints that were dropped
lhs_csr = lhs_csr[selected, :]
lhs_csc = lhs_csc[selected, :]
rhs = rhs[selected]
sense = sense[selected]
constr_idx = constr_idx[selected]
lazy[selected] = 1
# Load warm start
var_names = h5.get_array("static_var_names")
var_values = h5.get_array("mip_var_values")
assert var_values is not None
assert var_names is not None
for (var_idx, var_name) in enumerate(var_names):
var = model.getVarByName(var_name.decode())
var.start = var_values[var_idx]
print("Solving MIP with lazy constraints callback...")
def callback(model: gp.Model, where: int) -> None:
assert rhs is not None
assert lazy is not None
assert sense is not None
if where == GRB.Callback.MIPSOL:
x_val = np.array(model.cbGetSolution(model.getVars()))
slack = lhs_csc * x_val - rhs
slack[sense == b">"] *= -1
is_violated = slack > tol
for (j, rhs_j) in enumerate(rhs):
if is_violated[j]:
lazy[constr_idx[j]] = 0
expr = LinExpr(
lhs_csr[j, :].data, gp_vars[lhs_csr[j, :].indices]
)
if sense[j] == b"<":
model.cbLazy(expr <= rhs_j)
elif sense[j] == b">":
model.cbLazy(expr >= rhs_j)
else:
raise RuntimeError(f"Unknown sense: {sense[j]}")
model.optimize(callback)
print(f"Marking {lazy.sum():,.0f} constraints as lazy...")
h5.put_array("mip_constr_lazy", lazy)
h5.put_scalar("mip_constr_lazy_log", streams[0].getvalue())

@ -1,43 +0,0 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import json
from typing import Any, Dict, List
import gurobipy as gp
from ..h5 import H5File
class ExpertLazyComponent:
def __init__(self) -> None:
pass
def fit(self, train_h5: List[str]) -> None:
pass
def before_mip(self, test_h5: str, model: gp.Model, stats: Dict[str, Any]) -> None:
with H5File(test_h5, "r") as h5:
constr_names = h5.get_array("static_constr_names")
constr_lazy = h5.get_array("mip_constr_lazy")
constr_violations = h5.get_scalar("mip_constr_violations")
assert constr_names is not None
assert constr_violations is not None
# Static lazy constraints
n_static_lazy = 0
if constr_lazy is not None:
for (constr_idx, constr_name) in enumerate(constr_names):
if constr_lazy[constr_idx]:
constr = model.getConstrByName(constr_name.decode())
constr.lazy = 3
n_static_lazy += 1
stats.update({"Static lazy constraints": n_static_lazy})
# Dynamic lazy constraints
if hasattr(model, "_fix_violations"):
violations = json.loads(constr_violations)
model._fix_violations(model, violations, "aot")
stats.update({"Dynamic lazy constraints": len(violations)})

@ -0,0 +1,105 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
from typing import List, Dict, Any, Hashable
import numpy as np
from sklearn.preprocessing import MultiLabelBinarizer
from miplearn.extractors.abstract import FeaturesExtractor
from miplearn.h5 import H5File
from miplearn.solvers.gurobi import GurobiModel
logger = logging.getLogger(__name__)
# TODO: Replace GurobiModel by AbstractModel
# TODO: fix_violations: remove model.inner
# TODO: fix_violations: remove `where`
# TODO: Write documentation
# TODO: Implement ExpertLazyConstrComponent
class MemorizingLazyConstrComponent:
def __init__(self, clf: Any, extractor: FeaturesExtractor) -> None:
self.clf = clf
self.extractor = extractor
self.violations_: List[Hashable] = []
self.n_features_: int = 0
self.n_targets_: int = 0
def fit(self, train_h5: List[str]) -> None:
logger.info("Reading training data...")
n_samples = len(train_h5)
x, y, violations, n_features = [], [], [], None
violation_to_idx: Dict[Hashable, int] = {}
for h5_filename in train_h5:
with H5File(h5_filename, "r") as h5:
# Store lazy constraints
sample_violations_str = h5.get_scalar("mip_constr_violations")
assert sample_violations_str is not None
assert isinstance(sample_violations_str, str)
sample_violations = eval(sample_violations_str)
assert isinstance(sample_violations, list)
y_sample = []
for v in sample_violations:
if v not in violation_to_idx:
violation_to_idx[v] = len(violation_to_idx)
violations.append(v)
y_sample.append(violation_to_idx[v])
y.append(y_sample)
# Extract features
x_sample = self.extractor.get_instance_features(h5)
assert len(x_sample.shape) == 1
if n_features is None:
n_features = len(x_sample)
else:
assert len(x_sample) == n_features
x.append(x_sample)
logger.info("Constructing matrices...")
assert n_features is not None
self.n_features_ = n_features
self.violations_ = violations
self.n_targets_ = len(violation_to_idx)
x_np = np.vstack(x)
assert x_np.shape == (n_samples, n_features)
y_np = MultiLabelBinarizer().fit_transform(y)
assert y_np.shape == (n_samples, self.n_targets_)
logger.info(
f"Dataset has {n_samples:,d} samples, "
f"{n_features:,d} features and {self.n_targets_:,d} targets"
)
logger.info("Training classifier...")
self.clf.fit(x_np, y_np)
def before_mip(
self,
test_h5: str,
model: GurobiModel,
stats: Dict[str, Any],
) -> None:
assert self.violations_ is not None
if model.fix_violations is None:
return
# Read features
with H5File(test_h5, "r") as h5:
x_sample = self.extractor.get_instance_features(h5)
assert x_sample.shape == (self.n_features_,)
x_sample = x_sample.reshape(1, -1)
# Predict violated constraints
logger.info("Predicting violated lazy constraints...")
y = self.clf.predict(x_sample)
assert y.shape == (1, self.n_targets_)
y = y.reshape(-1)
# Enforce constraints
violations = [self.violations_[i] for (i, yi) in enumerate(y) if yi > 0.5]
logger.info(f"Enforcing {len(violations)} constraints ahead-of-time...")
model.fix_violations(model, violations, "aot")
stats["Lazy Constraints: AOT"] = len(violations)

@ -150,12 +150,12 @@ def build_tsp_model(data: Union[str, TravelingSalesmanData]) -> GurobiModel:
graph.add_edges_from(selected_edges)
for component in list(nx.connected_components(graph)):
if len(component) < model.inner._n_cities:
cut_edges = [
e
cut_edges = tuple(
(e[0], e[1])
for e in model.inner._edges
if (e[0] in component and e[1] not in component)
or (e[0] not in component and e[1] in component)
]
)
violations.append(cut_edges)
return violations

@ -0,0 +1,62 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import List, Dict, Any
from unittest.mock import Mock
from sklearn.dummy import DummyClassifier
from sklearn.neighbors import KNeighborsClassifier
from miplearn.components.lazy.mem import MemorizingLazyConstrComponent
from miplearn.extractors.abstract import FeaturesExtractor
from miplearn.problems.tsp import build_tsp_model
from miplearn.solvers.learning import LearningSolver
def test_mem_component(
tsp_h5: List[str],
default_extractor: FeaturesExtractor,
) -> None:
clf = Mock(wraps=DummyClassifier())
comp = MemorizingLazyConstrComponent(clf=clf, extractor=default_extractor)
comp.fit(tsp_h5)
# Should call fit method with correct arguments
clf.fit.assert_called()
x, y = clf.fit.call_args.args
assert x.shape == (3, 190)
assert y.tolist() == [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0],
[1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1],
]
# Should store violations
assert comp.violations_ is not None
assert comp.n_features_ == 190
assert comp.n_targets_ == 22
assert len(comp.violations_) == 22
# Call before-mip
stats: Dict[str, Any] = {}
model = Mock()
comp.before_mip(tsp_h5[0], model, stats)
# Should call predict with correct args
clf.predict.assert_called()
(x_test,) = clf.predict.call_args.args
assert x_test.shape == (1, 190)
def test_usage_tsp(
tsp_h5: List[str],
default_extractor: FeaturesExtractor,
) -> None:
# Should not crash
data_filenames = [f.replace(".h5", ".pkl.gz") for f in tsp_h5]
clf = KNeighborsClassifier(n_neighbors=1)
comp = MemorizingLazyConstrComponent(clf=clf, extractor=default_extractor)
solver = LearningSolver(components=[comp])
solver.fit(data_filenames)
solver.optimize(data_filenames[0], build_tsp_model)

@ -20,7 +20,8 @@ logger = logging.getLogger(__name__)
def test_mem_component(
multiknapsack_h5: List[str], default_extractor: FeaturesExtractor
multiknapsack_h5: List[str],
default_extractor: FeaturesExtractor,
) -> None:
# Create mock classifier
clf = Mock(wraps=DummyClassifier())

@ -8,13 +8,18 @@ from typing import List
import pytest
from miplearn.extractors.fields import H5FieldsExtractor
from miplearn.extractors.abstract import FeaturesExtractor
from miplearn.extractors.fields import H5FieldsExtractor
@pytest.fixture()
def multiknapsack_h5() -> List[str]:
return sorted(glob(f"{dirname(__file__)}/fixtures/multiknapsack*.h5"))
return sorted(glob(f"{dirname(__file__)}/fixtures/multiknapsack-n100*.h5"))
@pytest.fixture()
def tsp_h5() -> List[str]:
return sorted(glob(f"{dirname(__file__)}/fixtures/tsp-n20*.h5"))
@pytest.fixture()

@ -0,0 +1,22 @@
from os.path import dirname
import numpy as np
from scipy.stats import uniform, randint
from miplearn.collectors.basic import BasicCollector
from miplearn.io import write_pkl_gz
from miplearn.problems.tsp import TravelingSalesmanGenerator, build_tsp_model
np.random.seed(42)
gen = TravelingSalesmanGenerator(
x=uniform(loc=0.0, scale=1000.0),
y=uniform(loc=0.0, scale=1000.0),
n=randint(low=20, high=21),
gamma=uniform(loc=1.0, scale=0.25),
fix_cities=True,
round=True,
)
data = gen.generate(3)
data_filenames = write_pkl_gz(data, dirname(__file__), prefix="tsp-n20-")
collector = BasicCollector()
collector.collect(data_filenames, build_tsp_model)

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.
Loading…
Cancel
Save