mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Implement MemorizingLazyConstrComponent
This commit is contained in:
0
tests/components/lazy/__init__.py
Normal file
0
tests/components/lazy/__init__.py
Normal file
62
tests/components/lazy/test_mem.py
Normal file
62
tests/components/lazy/test_mem.py
Normal file
@@ -0,0 +1,62 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import List, Dict, Any
|
||||
from unittest.mock import Mock
|
||||
|
||||
from sklearn.dummy import DummyClassifier
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
|
||||
from miplearn.components.lazy.mem import MemorizingLazyConstrComponent
|
||||
from miplearn.extractors.abstract import FeaturesExtractor
|
||||
from miplearn.problems.tsp import build_tsp_model
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
def test_mem_component(
|
||||
tsp_h5: List[str],
|
||||
default_extractor: FeaturesExtractor,
|
||||
) -> None:
|
||||
clf = Mock(wraps=DummyClassifier())
|
||||
comp = MemorizingLazyConstrComponent(clf=clf, extractor=default_extractor)
|
||||
comp.fit(tsp_h5)
|
||||
|
||||
# Should call fit method with correct arguments
|
||||
clf.fit.assert_called()
|
||||
x, y = clf.fit.call_args.args
|
||||
assert x.shape == (3, 190)
|
||||
assert y.tolist() == [
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
|
||||
[1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0],
|
||||
[1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1],
|
||||
]
|
||||
|
||||
# Should store violations
|
||||
assert comp.violations_ is not None
|
||||
assert comp.n_features_ == 190
|
||||
assert comp.n_targets_ == 22
|
||||
assert len(comp.violations_) == 22
|
||||
|
||||
# Call before-mip
|
||||
stats: Dict[str, Any] = {}
|
||||
model = Mock()
|
||||
comp.before_mip(tsp_h5[0], model, stats)
|
||||
|
||||
# Should call predict with correct args
|
||||
clf.predict.assert_called()
|
||||
(x_test,) = clf.predict.call_args.args
|
||||
assert x_test.shape == (1, 190)
|
||||
|
||||
|
||||
def test_usage_tsp(
|
||||
tsp_h5: List[str],
|
||||
default_extractor: FeaturesExtractor,
|
||||
) -> None:
|
||||
# Should not crash
|
||||
data_filenames = [f.replace(".h5", ".pkl.gz") for f in tsp_h5]
|
||||
clf = KNeighborsClassifier(n_neighbors=1)
|
||||
comp = MemorizingLazyConstrComponent(clf=clf, extractor=default_extractor)
|
||||
solver = LearningSolver(components=[comp])
|
||||
solver.fit(data_filenames)
|
||||
solver.optimize(data_filenames[0], build_tsp_model)
|
||||
Reference in New Issue
Block a user