mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Implement MemorizingLazyConstrComponent
This commit is contained in:
@@ -62,9 +62,7 @@ class BasicCollector:
|
|||||||
and model.fix_violations is not None
|
and model.fix_violations is not None
|
||||||
):
|
):
|
||||||
model.fix_violations(model, model.violations_, "aot")
|
model.fix_violations(model, model.violations_, "aot")
|
||||||
h5.put_scalar(
|
h5.put_scalar("mip_constr_violations", repr(model.violations_))
|
||||||
"mip_constr_violations", json.dumps(model.violations_)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Save MPS file
|
# Save MPS file
|
||||||
model.write(mps_filename)
|
model.write(mps_filename)
|
||||||
|
|||||||
@@ -1,117 +0,0 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
||||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
|
||||||
|
|
||||||
from io import StringIO
|
|
||||||
from typing import Callable
|
|
||||||
|
|
||||||
import gurobipy as gp
|
|
||||||
import numpy as np
|
|
||||||
from gurobipy import GRB, LinExpr
|
|
||||||
|
|
||||||
from ..h5 import H5File
|
|
||||||
from ..io import _RedirectOutput
|
|
||||||
|
|
||||||
|
|
||||||
class LazyCollector:
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
min_constrs: int = 100_000,
|
|
||||||
time_limit: float = 900,
|
|
||||||
) -> None:
|
|
||||||
self.min_constrs = min_constrs
|
|
||||||
self.time_limit = time_limit
|
|
||||||
|
|
||||||
def collect(
|
|
||||||
self, data_filename: str, build_model: Callable, tol: float = 1e-6
|
|
||||||
) -> None:
|
|
||||||
h5_filename = f"{data_filename}.h5"
|
|
||||||
with H5File(h5_filename, "r+") as h5:
|
|
||||||
streams = [StringIO()]
|
|
||||||
lazy = None
|
|
||||||
with _RedirectOutput(streams):
|
|
||||||
slacks = h5.get_array("mip_constr_slacks")
|
|
||||||
assert slacks is not None
|
|
||||||
|
|
||||||
# Check minimum problem size
|
|
||||||
if len(slacks) < self.min_constrs:
|
|
||||||
print("Problem is too small. Skipping.")
|
|
||||||
h5.put_array("mip_constr_lazy", np.zeros(len(slacks)))
|
|
||||||
return
|
|
||||||
|
|
||||||
# Load model
|
|
||||||
print("Loading model...")
|
|
||||||
model = build_model(data_filename)
|
|
||||||
model.params.LazyConstraints = True
|
|
||||||
model.params.timeLimit = self.time_limit
|
|
||||||
gp_constrs = np.array(model.getConstrs())
|
|
||||||
gp_vars = np.array(model.getVars())
|
|
||||||
|
|
||||||
# Load constraints
|
|
||||||
lhs = h5.get_sparse("static_constr_lhs")
|
|
||||||
rhs = h5.get_array("static_constr_rhs")
|
|
||||||
sense = h5.get_array("static_constr_sense")
|
|
||||||
assert lhs is not None
|
|
||||||
assert rhs is not None
|
|
||||||
assert sense is not None
|
|
||||||
lhs_csr = lhs.tocsr()
|
|
||||||
lhs_csc = lhs.tocsc()
|
|
||||||
constr_idx = np.array(range(len(rhs)))
|
|
||||||
lazy = np.zeros(len(rhs))
|
|
||||||
|
|
||||||
# Drop loose constraints
|
|
||||||
selected = (slacks > 0) & ((sense == b"<") | (sense == b">"))
|
|
||||||
loose_constrs = gp_constrs[selected]
|
|
||||||
print(
|
|
||||||
f"Removing {len(loose_constrs):,d} constraints (out of {len(rhs):,d})..."
|
|
||||||
)
|
|
||||||
model.remove(list(loose_constrs))
|
|
||||||
|
|
||||||
# Filter to constraints that were dropped
|
|
||||||
lhs_csr = lhs_csr[selected, :]
|
|
||||||
lhs_csc = lhs_csc[selected, :]
|
|
||||||
rhs = rhs[selected]
|
|
||||||
sense = sense[selected]
|
|
||||||
constr_idx = constr_idx[selected]
|
|
||||||
lazy[selected] = 1
|
|
||||||
|
|
||||||
# Load warm start
|
|
||||||
var_names = h5.get_array("static_var_names")
|
|
||||||
var_values = h5.get_array("mip_var_values")
|
|
||||||
assert var_values is not None
|
|
||||||
assert var_names is not None
|
|
||||||
for (var_idx, var_name) in enumerate(var_names):
|
|
||||||
var = model.getVarByName(var_name.decode())
|
|
||||||
var.start = var_values[var_idx]
|
|
||||||
|
|
||||||
print("Solving MIP with lazy constraints callback...")
|
|
||||||
|
|
||||||
def callback(model: gp.Model, where: int) -> None:
|
|
||||||
assert rhs is not None
|
|
||||||
assert lazy is not None
|
|
||||||
assert sense is not None
|
|
||||||
|
|
||||||
if where == GRB.Callback.MIPSOL:
|
|
||||||
x_val = np.array(model.cbGetSolution(model.getVars()))
|
|
||||||
slack = lhs_csc * x_val - rhs
|
|
||||||
slack[sense == b">"] *= -1
|
|
||||||
is_violated = slack > tol
|
|
||||||
|
|
||||||
for (j, rhs_j) in enumerate(rhs):
|
|
||||||
if is_violated[j]:
|
|
||||||
lazy[constr_idx[j]] = 0
|
|
||||||
expr = LinExpr(
|
|
||||||
lhs_csr[j, :].data, gp_vars[lhs_csr[j, :].indices]
|
|
||||||
)
|
|
||||||
if sense[j] == b"<":
|
|
||||||
model.cbLazy(expr <= rhs_j)
|
|
||||||
elif sense[j] == b">":
|
|
||||||
model.cbLazy(expr >= rhs_j)
|
|
||||||
else:
|
|
||||||
raise RuntimeError(f"Unknown sense: {sense[j]}")
|
|
||||||
|
|
||||||
model.optimize(callback)
|
|
||||||
print(f"Marking {lazy.sum():,.0f} constraints as lazy...")
|
|
||||||
|
|
||||||
h5.put_array("mip_constr_lazy", lazy)
|
|
||||||
h5.put_scalar("mip_constr_lazy_log", streams[0].getvalue())
|
|
||||||
@@ -1,43 +0,0 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
||||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
|
||||||
|
|
||||||
import json
|
|
||||||
from typing import Any, Dict, List
|
|
||||||
|
|
||||||
import gurobipy as gp
|
|
||||||
|
|
||||||
from ..h5 import H5File
|
|
||||||
|
|
||||||
|
|
||||||
class ExpertLazyComponent:
|
|
||||||
def __init__(self) -> None:
|
|
||||||
pass
|
|
||||||
|
|
||||||
def fit(self, train_h5: List[str]) -> None:
|
|
||||||
pass
|
|
||||||
|
|
||||||
def before_mip(self, test_h5: str, model: gp.Model, stats: Dict[str, Any]) -> None:
|
|
||||||
with H5File(test_h5, "r") as h5:
|
|
||||||
constr_names = h5.get_array("static_constr_names")
|
|
||||||
constr_lazy = h5.get_array("mip_constr_lazy")
|
|
||||||
constr_violations = h5.get_scalar("mip_constr_violations")
|
|
||||||
|
|
||||||
assert constr_names is not None
|
|
||||||
assert constr_violations is not None
|
|
||||||
|
|
||||||
# Static lazy constraints
|
|
||||||
n_static_lazy = 0
|
|
||||||
if constr_lazy is not None:
|
|
||||||
for (constr_idx, constr_name) in enumerate(constr_names):
|
|
||||||
if constr_lazy[constr_idx]:
|
|
||||||
constr = model.getConstrByName(constr_name.decode())
|
|
||||||
constr.lazy = 3
|
|
||||||
n_static_lazy += 1
|
|
||||||
stats.update({"Static lazy constraints": n_static_lazy})
|
|
||||||
|
|
||||||
# Dynamic lazy constraints
|
|
||||||
if hasattr(model, "_fix_violations"):
|
|
||||||
violations = json.loads(constr_violations)
|
|
||||||
model._fix_violations(model, violations, "aot")
|
|
||||||
stats.update({"Dynamic lazy constraints": len(violations)})
|
|
||||||
0
miplearn/components/lazy/__init__.py
Normal file
0
miplearn/components/lazy/__init__.py
Normal file
105
miplearn/components/lazy/mem.py
Normal file
105
miplearn/components/lazy/mem.py
Normal file
@@ -0,0 +1,105 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
import logging
|
||||||
|
from typing import List, Dict, Any, Hashable
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.preprocessing import MultiLabelBinarizer
|
||||||
|
|
||||||
|
from miplearn.extractors.abstract import FeaturesExtractor
|
||||||
|
from miplearn.h5 import H5File
|
||||||
|
from miplearn.solvers.gurobi import GurobiModel
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# TODO: Replace GurobiModel by AbstractModel
|
||||||
|
# TODO: fix_violations: remove model.inner
|
||||||
|
# TODO: fix_violations: remove `where`
|
||||||
|
# TODO: Write documentation
|
||||||
|
# TODO: Implement ExpertLazyConstrComponent
|
||||||
|
|
||||||
|
|
||||||
|
class MemorizingLazyConstrComponent:
|
||||||
|
def __init__(self, clf: Any, extractor: FeaturesExtractor) -> None:
|
||||||
|
self.clf = clf
|
||||||
|
self.extractor = extractor
|
||||||
|
self.violations_: List[Hashable] = []
|
||||||
|
self.n_features_: int = 0
|
||||||
|
self.n_targets_: int = 0
|
||||||
|
|
||||||
|
def fit(self, train_h5: List[str]) -> None:
|
||||||
|
logger.info("Reading training data...")
|
||||||
|
n_samples = len(train_h5)
|
||||||
|
x, y, violations, n_features = [], [], [], None
|
||||||
|
violation_to_idx: Dict[Hashable, int] = {}
|
||||||
|
for h5_filename in train_h5:
|
||||||
|
with H5File(h5_filename, "r") as h5:
|
||||||
|
|
||||||
|
# Store lazy constraints
|
||||||
|
sample_violations_str = h5.get_scalar("mip_constr_violations")
|
||||||
|
assert sample_violations_str is not None
|
||||||
|
assert isinstance(sample_violations_str, str)
|
||||||
|
sample_violations = eval(sample_violations_str)
|
||||||
|
assert isinstance(sample_violations, list)
|
||||||
|
y_sample = []
|
||||||
|
for v in sample_violations:
|
||||||
|
if v not in violation_to_idx:
|
||||||
|
violation_to_idx[v] = len(violation_to_idx)
|
||||||
|
violations.append(v)
|
||||||
|
y_sample.append(violation_to_idx[v])
|
||||||
|
y.append(y_sample)
|
||||||
|
|
||||||
|
# Extract features
|
||||||
|
x_sample = self.extractor.get_instance_features(h5)
|
||||||
|
assert len(x_sample.shape) == 1
|
||||||
|
if n_features is None:
|
||||||
|
n_features = len(x_sample)
|
||||||
|
else:
|
||||||
|
assert len(x_sample) == n_features
|
||||||
|
x.append(x_sample)
|
||||||
|
|
||||||
|
logger.info("Constructing matrices...")
|
||||||
|
assert n_features is not None
|
||||||
|
self.n_features_ = n_features
|
||||||
|
self.violations_ = violations
|
||||||
|
self.n_targets_ = len(violation_to_idx)
|
||||||
|
x_np = np.vstack(x)
|
||||||
|
assert x_np.shape == (n_samples, n_features)
|
||||||
|
y_np = MultiLabelBinarizer().fit_transform(y)
|
||||||
|
assert y_np.shape == (n_samples, self.n_targets_)
|
||||||
|
logger.info(
|
||||||
|
f"Dataset has {n_samples:,d} samples, "
|
||||||
|
f"{n_features:,d} features and {self.n_targets_:,d} targets"
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.info("Training classifier...")
|
||||||
|
self.clf.fit(x_np, y_np)
|
||||||
|
|
||||||
|
def before_mip(
|
||||||
|
self,
|
||||||
|
test_h5: str,
|
||||||
|
model: GurobiModel,
|
||||||
|
stats: Dict[str, Any],
|
||||||
|
) -> None:
|
||||||
|
assert self.violations_ is not None
|
||||||
|
if model.fix_violations is None:
|
||||||
|
return
|
||||||
|
|
||||||
|
# Read features
|
||||||
|
with H5File(test_h5, "r") as h5:
|
||||||
|
x_sample = self.extractor.get_instance_features(h5)
|
||||||
|
assert x_sample.shape == (self.n_features_,)
|
||||||
|
x_sample = x_sample.reshape(1, -1)
|
||||||
|
|
||||||
|
# Predict violated constraints
|
||||||
|
logger.info("Predicting violated lazy constraints...")
|
||||||
|
y = self.clf.predict(x_sample)
|
||||||
|
assert y.shape == (1, self.n_targets_)
|
||||||
|
y = y.reshape(-1)
|
||||||
|
|
||||||
|
# Enforce constraints
|
||||||
|
violations = [self.violations_[i] for (i, yi) in enumerate(y) if yi > 0.5]
|
||||||
|
logger.info(f"Enforcing {len(violations)} constraints ahead-of-time...")
|
||||||
|
model.fix_violations(model, violations, "aot")
|
||||||
|
stats["Lazy Constraints: AOT"] = len(violations)
|
||||||
@@ -150,12 +150,12 @@ def build_tsp_model(data: Union[str, TravelingSalesmanData]) -> GurobiModel:
|
|||||||
graph.add_edges_from(selected_edges)
|
graph.add_edges_from(selected_edges)
|
||||||
for component in list(nx.connected_components(graph)):
|
for component in list(nx.connected_components(graph)):
|
||||||
if len(component) < model.inner._n_cities:
|
if len(component) < model.inner._n_cities:
|
||||||
cut_edges = [
|
cut_edges = tuple(
|
||||||
e
|
(e[0], e[1])
|
||||||
for e in model.inner._edges
|
for e in model.inner._edges
|
||||||
if (e[0] in component and e[1] not in component)
|
if (e[0] in component and e[1] not in component)
|
||||||
or (e[0] not in component and e[1] in component)
|
or (e[0] not in component and e[1] in component)
|
||||||
]
|
)
|
||||||
violations.append(cut_edges)
|
violations.append(cut_edges)
|
||||||
return violations
|
return violations
|
||||||
|
|
||||||
|
|||||||
0
tests/components/lazy/__init__.py
Normal file
0
tests/components/lazy/__init__.py
Normal file
62
tests/components/lazy/test_mem.py
Normal file
62
tests/components/lazy/test_mem.py
Normal file
@@ -0,0 +1,62 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
from typing import List, Dict, Any
|
||||||
|
from unittest.mock import Mock
|
||||||
|
|
||||||
|
from sklearn.dummy import DummyClassifier
|
||||||
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
|
|
||||||
|
from miplearn.components.lazy.mem import MemorizingLazyConstrComponent
|
||||||
|
from miplearn.extractors.abstract import FeaturesExtractor
|
||||||
|
from miplearn.problems.tsp import build_tsp_model
|
||||||
|
from miplearn.solvers.learning import LearningSolver
|
||||||
|
|
||||||
|
|
||||||
|
def test_mem_component(
|
||||||
|
tsp_h5: List[str],
|
||||||
|
default_extractor: FeaturesExtractor,
|
||||||
|
) -> None:
|
||||||
|
clf = Mock(wraps=DummyClassifier())
|
||||||
|
comp = MemorizingLazyConstrComponent(clf=clf, extractor=default_extractor)
|
||||||
|
comp.fit(tsp_h5)
|
||||||
|
|
||||||
|
# Should call fit method with correct arguments
|
||||||
|
clf.fit.assert_called()
|
||||||
|
x, y = clf.fit.call_args.args
|
||||||
|
assert x.shape == (3, 190)
|
||||||
|
assert y.tolist() == [
|
||||||
|
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
|
||||||
|
[1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0],
|
||||||
|
[1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1],
|
||||||
|
]
|
||||||
|
|
||||||
|
# Should store violations
|
||||||
|
assert comp.violations_ is not None
|
||||||
|
assert comp.n_features_ == 190
|
||||||
|
assert comp.n_targets_ == 22
|
||||||
|
assert len(comp.violations_) == 22
|
||||||
|
|
||||||
|
# Call before-mip
|
||||||
|
stats: Dict[str, Any] = {}
|
||||||
|
model = Mock()
|
||||||
|
comp.before_mip(tsp_h5[0], model, stats)
|
||||||
|
|
||||||
|
# Should call predict with correct args
|
||||||
|
clf.predict.assert_called()
|
||||||
|
(x_test,) = clf.predict.call_args.args
|
||||||
|
assert x_test.shape == (1, 190)
|
||||||
|
|
||||||
|
|
||||||
|
def test_usage_tsp(
|
||||||
|
tsp_h5: List[str],
|
||||||
|
default_extractor: FeaturesExtractor,
|
||||||
|
) -> None:
|
||||||
|
# Should not crash
|
||||||
|
data_filenames = [f.replace(".h5", ".pkl.gz") for f in tsp_h5]
|
||||||
|
clf = KNeighborsClassifier(n_neighbors=1)
|
||||||
|
comp = MemorizingLazyConstrComponent(clf=clf, extractor=default_extractor)
|
||||||
|
solver = LearningSolver(components=[comp])
|
||||||
|
solver.fit(data_filenames)
|
||||||
|
solver.optimize(data_filenames[0], build_tsp_model)
|
||||||
@@ -20,7 +20,8 @@ logger = logging.getLogger(__name__)
|
|||||||
|
|
||||||
|
|
||||||
def test_mem_component(
|
def test_mem_component(
|
||||||
multiknapsack_h5: List[str], default_extractor: FeaturesExtractor
|
multiknapsack_h5: List[str],
|
||||||
|
default_extractor: FeaturesExtractor,
|
||||||
) -> None:
|
) -> None:
|
||||||
# Create mock classifier
|
# Create mock classifier
|
||||||
clf = Mock(wraps=DummyClassifier())
|
clf = Mock(wraps=DummyClassifier())
|
||||||
|
|||||||
@@ -8,13 +8,18 @@ from typing import List
|
|||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
from miplearn.extractors.fields import H5FieldsExtractor
|
|
||||||
from miplearn.extractors.abstract import FeaturesExtractor
|
from miplearn.extractors.abstract import FeaturesExtractor
|
||||||
|
from miplearn.extractors.fields import H5FieldsExtractor
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture()
|
@pytest.fixture()
|
||||||
def multiknapsack_h5() -> List[str]:
|
def multiknapsack_h5() -> List[str]:
|
||||||
return sorted(glob(f"{dirname(__file__)}/fixtures/multiknapsack*.h5"))
|
return sorted(glob(f"{dirname(__file__)}/fixtures/multiknapsack-n100*.h5"))
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture()
|
||||||
|
def tsp_h5() -> List[str]:
|
||||||
|
return sorted(glob(f"{dirname(__file__)}/fixtures/tsp-n20*.h5"))
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture()
|
@pytest.fixture()
|
||||||
|
|||||||
22
tests/fixtures/gen_tsp.py
vendored
Normal file
22
tests/fixtures/gen_tsp.py
vendored
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
from os.path import dirname
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from scipy.stats import uniform, randint
|
||||||
|
|
||||||
|
from miplearn.collectors.basic import BasicCollector
|
||||||
|
from miplearn.io import write_pkl_gz
|
||||||
|
from miplearn.problems.tsp import TravelingSalesmanGenerator, build_tsp_model
|
||||||
|
|
||||||
|
np.random.seed(42)
|
||||||
|
gen = TravelingSalesmanGenerator(
|
||||||
|
x=uniform(loc=0.0, scale=1000.0),
|
||||||
|
y=uniform(loc=0.0, scale=1000.0),
|
||||||
|
n=randint(low=20, high=21),
|
||||||
|
gamma=uniform(loc=1.0, scale=0.25),
|
||||||
|
fix_cities=True,
|
||||||
|
round=True,
|
||||||
|
)
|
||||||
|
data = gen.generate(3)
|
||||||
|
data_filenames = write_pkl_gz(data, dirname(__file__), prefix="tsp-n20-")
|
||||||
|
collector = BasicCollector()
|
||||||
|
collector.collect(data_filenames, build_tsp_model)
|
||||||
BIN
tests/fixtures/tsp-n20-00000.h5
vendored
Normal file
BIN
tests/fixtures/tsp-n20-00000.h5
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/tsp-n20-00000.mps.gz
vendored
Normal file
BIN
tests/fixtures/tsp-n20-00000.mps.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/tsp-n20-00000.pkl.gz
vendored
Normal file
BIN
tests/fixtures/tsp-n20-00000.pkl.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/tsp-n20-00001.h5
vendored
Normal file
BIN
tests/fixtures/tsp-n20-00001.h5
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/tsp-n20-00001.mps.gz
vendored
Normal file
BIN
tests/fixtures/tsp-n20-00001.mps.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/tsp-n20-00001.pkl.gz
vendored
Normal file
BIN
tests/fixtures/tsp-n20-00001.pkl.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/tsp-n20-00002.h5
vendored
Normal file
BIN
tests/fixtures/tsp-n20-00002.h5
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/tsp-n20-00002.mps.gz
vendored
Normal file
BIN
tests/fixtures/tsp-n20-00002.mps.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/tsp-n20-00002.pkl.gz
vendored
Normal file
BIN
tests/fixtures/tsp-n20-00002.pkl.gz
vendored
Normal file
Binary file not shown.
Reference in New Issue
Block a user