mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Simplify AdaptiveClassifier
This commit is contained in:
@@ -5,106 +5,57 @@
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
from sklearn.model_selection import cross_val_score
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AdaptiveClassifier(Classifier):
|
||||
"""
|
||||
A classifier that automatically switches strategies based on the number of
|
||||
samples and cross-validation scores.
|
||||
A meta-classifier which dynamically selects what actual classifier to use
|
||||
based on the number of samples in the training data.
|
||||
|
||||
By default, uses CountingClassifier for less than 30 samples and
|
||||
LogisticRegression (with standard scaling) for 30 or more samples.
|
||||
"""
|
||||
def __init__(self,
|
||||
predictor=None,
|
||||
min_samples_predict=1,
|
||||
min_samples_cv=100,
|
||||
thr_fix=0.999,
|
||||
thr_alpha=0.50,
|
||||
thr_balance=0.95,
|
||||
):
|
||||
self.min_samples_predict = min_samples_predict
|
||||
self.min_samples_cv = min_samples_cv
|
||||
self.thr_fix = thr_fix
|
||||
self.thr_alpha = thr_alpha
|
||||
self.thr_balance = thr_balance
|
||||
self.predictor_factory = predictor
|
||||
self.predictor = None
|
||||
|
||||
def __init__(self, classifiers=None):
|
||||
"""
|
||||
Initializes the classifier.
|
||||
|
||||
The `classifiers` argument must be a list of tuples where the second element
|
||||
of the tuple is the classifier and the first element is the number of
|
||||
samples required. For example, if `classifiers` is set to
|
||||
```
|
||||
[(100, ClassifierA()),
|
||||
(50, ClassifierB()),
|
||||
(0, ClassifierC())]
|
||||
``` then ClassifierA will be used if n_samples >= 100, ClassifierB will
|
||||
be used if 100 > n_samples >= 50 and ClassifierC will be used if
|
||||
50 > n_samples. The list must be ordered in (strictly) decreasing order.
|
||||
"""
|
||||
if classifiers is None:
|
||||
classifiers = [
|
||||
(30, make_pipeline(StandardScaler(), LogisticRegression())),
|
||||
(0, CountingClassifier())
|
||||
]
|
||||
self.available_classifiers = classifiers
|
||||
self.classifier = None
|
||||
|
||||
def fit(self, x_train, y_train):
|
||||
n_samples = x_train.shape[0]
|
||||
|
||||
# If number of samples is too small, don't predict anything.
|
||||
if n_samples < self.min_samples_predict:
|
||||
logger.debug(" Too few samples (%d); always predicting false" % n_samples)
|
||||
self.predictor = 0
|
||||
return
|
||||
|
||||
# If vast majority of observations are false, always return false.
|
||||
y_train_avg = np.average(y_train)
|
||||
if y_train_avg <= 1.0 - self.thr_fix:
|
||||
logger.debug(" Most samples are negative (%.3f); always returning false" % y_train_avg)
|
||||
self.predictor = 0
|
||||
return
|
||||
|
||||
# If vast majority of observations are true, always return true.
|
||||
if y_train_avg >= self.thr_fix:
|
||||
logger.debug(" Most samples are positive (%.3f); always returning true" % y_train_avg)
|
||||
self.predictor = 1
|
||||
return
|
||||
|
||||
# If classes are too unbalanced, don't predict anything.
|
||||
if y_train_avg < (1 - self.thr_balance) or y_train_avg > self.thr_balance:
|
||||
logger.debug(" Classes are too unbalanced (%.3f); always returning false" % y_train_avg)
|
||||
self.predictor = 0
|
||||
return
|
||||
|
||||
# Select ML model if none is provided
|
||||
if self.predictor_factory is None:
|
||||
if n_samples < 30:
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
self.predictor_factory = KNeighborsClassifier(n_neighbors=n_samples)
|
||||
else:
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
self.predictor_factory = make_pipeline(StandardScaler(), LogisticRegression())
|
||||
|
||||
# Create predictor
|
||||
if callable(self.predictor_factory):
|
||||
pred = self.predictor_factory()
|
||||
else:
|
||||
pred = deepcopy(self.predictor_factory)
|
||||
|
||||
# Skip cross-validation if number of samples is too small
|
||||
if n_samples < self.min_samples_cv:
|
||||
logger.debug(" Too few samples (%d); skipping cross validation" % n_samples)
|
||||
self.predictor = pred
|
||||
self.predictor.fit(x_train, y_train)
|
||||
return
|
||||
|
||||
# Calculate cross-validation score
|
||||
cv_score = np.mean(cross_val_score(pred, x_train, y_train, cv=5))
|
||||
dummy_score = max(y_train_avg, 1 - y_train_avg)
|
||||
cv_thr = 1. * self.thr_alpha + dummy_score * (1 - self.thr_alpha)
|
||||
|
||||
# If cross-validation score is too low, don't predict anything.
|
||||
if cv_score < cv_thr:
|
||||
logger.debug(" Score is too low (%.3f < %.3f); always returning false" % (cv_score, cv_thr))
|
||||
self.predictor = 0
|
||||
else:
|
||||
logger.debug(" Score is acceptable (%.3f > %.3f); training classifier" % (cv_score, cv_thr))
|
||||
self.predictor = pred
|
||||
self.predictor.fit(x_train, y_train)
|
||||
for (min_samples, clf_prototype) in self.available_classifiers:
|
||||
if n_samples >= min_samples:
|
||||
self.classifier = deepcopy(clf_prototype)
|
||||
self.classifier.fit(x_train, y_train)
|
||||
break
|
||||
|
||||
def predict_proba(self, x_test):
|
||||
if isinstance(self.predictor, int):
|
||||
y_pred = np.zeros((x_test.shape[0], 2))
|
||||
y_pred[:, self.predictor] = 1.0
|
||||
return y_pred
|
||||
else:
|
||||
return self.predictor.predict_proba(x_test)
|
||||
return self.classifier.predict_proba(x_test)
|
||||
|
||||
|
||||
|
||||
@@ -21,7 +21,8 @@ class CountingClassifier(Classifier):
|
||||
self.mean = np.mean(y_train)
|
||||
|
||||
def predict_proba(self, x_test):
|
||||
return np.array([[1 - self.mean, self.mean]])
|
||||
return np.array([[1 - self.mean, self.mean]
|
||||
for _ in range(x_test.shape[0])])
|
||||
|
||||
def __repr__(self):
|
||||
return "CountingClassifier(mean=%.3f)" % self.mean
|
||||
return "CountingClassifier(mean=%s)" % self.mean
|
||||
|
||||
@@ -12,6 +12,7 @@ E = 0.1
|
||||
def test_counting():
|
||||
clf = CountingClassifier()
|
||||
clf.fit(np.zeros((8, 25)), [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0])
|
||||
expected_proba = np.array([[0.375, 0.625]])
|
||||
actual_proba = clf.predict_proba(np.zeros((1, 25)))
|
||||
expected_proba = np.array([[0.375, 0.625],
|
||||
[0.375, 0.625]])
|
||||
actual_proba = clf.predict_proba(np.zeros((2, 25)))
|
||||
assert norm(actual_proba - expected_proba) < E
|
||||
|
||||
@@ -67,6 +67,7 @@ class PrimalSolutionComponent(Component):
|
||||
x_test = VariableFeaturesExtractor().extract([instance])
|
||||
var_split = Extractor.split_variables(instance)
|
||||
for category in var_split.keys():
|
||||
n = len(var_split[category])
|
||||
for (i, (var, index)) in enumerate(var_split[category]):
|
||||
if var not in solution.keys():
|
||||
solution[var] = {}
|
||||
@@ -76,10 +77,12 @@ class PrimalSolutionComponent(Component):
|
||||
continue
|
||||
clf = self.classifiers[category, label]
|
||||
if isinstance(clf, float):
|
||||
ws = np.array([[1-clf, clf]
|
||||
for _ in range(len(var_split[category]))])
|
||||
ws = np.array([[1 - clf, clf] for _ in range(n)])
|
||||
else:
|
||||
ws = clf.predict_proba(x_test[category])
|
||||
print("clf=", clf)
|
||||
print("x_test=", x_test[category])
|
||||
assert ws.shape == (n, 2), "ws.shape should be (%d, 2) not %s" % (n, ws.shape)
|
||||
for (i, (var, index)) in enumerate(var_split[category]):
|
||||
if ws[i, 1] >= self.threshold:
|
||||
solution[var][index] = label
|
||||
|
||||
Reference in New Issue
Block a user