|
|
|
@ -5,106 +5,57 @@
|
|
|
|
|
import logging
|
|
|
|
|
from copy import deepcopy
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
from miplearn.classifiers import Classifier
|
|
|
|
|
from sklearn.model_selection import cross_val_score
|
|
|
|
|
from miplearn.classifiers.counting import CountingClassifier
|
|
|
|
|
from sklearn.linear_model import LogisticRegression
|
|
|
|
|
from sklearn.pipeline import make_pipeline
|
|
|
|
|
from sklearn.preprocessing import StandardScaler
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AdaptiveClassifier(Classifier):
|
|
|
|
|
"""
|
|
|
|
|
A classifier that automatically switches strategies based on the number of
|
|
|
|
|
samples and cross-validation scores.
|
|
|
|
|
A meta-classifier which dynamically selects what actual classifier to use
|
|
|
|
|
based on the number of samples in the training data.
|
|
|
|
|
|
|
|
|
|
By default, uses CountingClassifier for less than 30 samples and
|
|
|
|
|
LogisticRegression (with standard scaling) for 30 or more samples.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, classifiers=None):
|
|
|
|
|
"""
|
|
|
|
|
Initializes the classifier.
|
|
|
|
|
|
|
|
|
|
The `classifiers` argument must be a list of tuples where the second element
|
|
|
|
|
of the tuple is the classifier and the first element is the number of
|
|
|
|
|
samples required. For example, if `classifiers` is set to
|
|
|
|
|
```
|
|
|
|
|
[(100, ClassifierA()),
|
|
|
|
|
(50, ClassifierB()),
|
|
|
|
|
(0, ClassifierC())]
|
|
|
|
|
``` then ClassifierA will be used if n_samples >= 100, ClassifierB will
|
|
|
|
|
be used if 100 > n_samples >= 50 and ClassifierC will be used if
|
|
|
|
|
50 > n_samples. The list must be ordered in (strictly) decreasing order.
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self,
|
|
|
|
|
predictor=None,
|
|
|
|
|
min_samples_predict=1,
|
|
|
|
|
min_samples_cv=100,
|
|
|
|
|
thr_fix=0.999,
|
|
|
|
|
thr_alpha=0.50,
|
|
|
|
|
thr_balance=0.95,
|
|
|
|
|
):
|
|
|
|
|
self.min_samples_predict = min_samples_predict
|
|
|
|
|
self.min_samples_cv = min_samples_cv
|
|
|
|
|
self.thr_fix = thr_fix
|
|
|
|
|
self.thr_alpha = thr_alpha
|
|
|
|
|
self.thr_balance = thr_balance
|
|
|
|
|
self.predictor_factory = predictor
|
|
|
|
|
self.predictor = None
|
|
|
|
|
if classifiers is None:
|
|
|
|
|
classifiers = [
|
|
|
|
|
(30, make_pipeline(StandardScaler(), LogisticRegression())),
|
|
|
|
|
(0, CountingClassifier())
|
|
|
|
|
]
|
|
|
|
|
self.available_classifiers = classifiers
|
|
|
|
|
self.classifier = None
|
|
|
|
|
|
|
|
|
|
def fit(self, x_train, y_train):
|
|
|
|
|
n_samples = x_train.shape[0]
|
|
|
|
|
|
|
|
|
|
# If number of samples is too small, don't predict anything.
|
|
|
|
|
if n_samples < self.min_samples_predict:
|
|
|
|
|
logger.debug(" Too few samples (%d); always predicting false" % n_samples)
|
|
|
|
|
self.predictor = 0
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# If vast majority of observations are false, always return false.
|
|
|
|
|
y_train_avg = np.average(y_train)
|
|
|
|
|
if y_train_avg <= 1.0 - self.thr_fix:
|
|
|
|
|
logger.debug(" Most samples are negative (%.3f); always returning false" % y_train_avg)
|
|
|
|
|
self.predictor = 0
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# If vast majority of observations are true, always return true.
|
|
|
|
|
if y_train_avg >= self.thr_fix:
|
|
|
|
|
logger.debug(" Most samples are positive (%.3f); always returning true" % y_train_avg)
|
|
|
|
|
self.predictor = 1
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# If classes are too unbalanced, don't predict anything.
|
|
|
|
|
if y_train_avg < (1 - self.thr_balance) or y_train_avg > self.thr_balance:
|
|
|
|
|
logger.debug(" Classes are too unbalanced (%.3f); always returning false" % y_train_avg)
|
|
|
|
|
self.predictor = 0
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# Select ML model if none is provided
|
|
|
|
|
if self.predictor_factory is None:
|
|
|
|
|
if n_samples < 30:
|
|
|
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
|
|
|
self.predictor_factory = KNeighborsClassifier(n_neighbors=n_samples)
|
|
|
|
|
else:
|
|
|
|
|
from sklearn.pipeline import make_pipeline
|
|
|
|
|
from sklearn.preprocessing import StandardScaler
|
|
|
|
|
from sklearn.linear_model import LogisticRegression
|
|
|
|
|
self.predictor_factory = make_pipeline(StandardScaler(), LogisticRegression())
|
|
|
|
|
|
|
|
|
|
# Create predictor
|
|
|
|
|
if callable(self.predictor_factory):
|
|
|
|
|
pred = self.predictor_factory()
|
|
|
|
|
else:
|
|
|
|
|
pred = deepcopy(self.predictor_factory)
|
|
|
|
|
|
|
|
|
|
# Skip cross-validation if number of samples is too small
|
|
|
|
|
if n_samples < self.min_samples_cv:
|
|
|
|
|
logger.debug(" Too few samples (%d); skipping cross validation" % n_samples)
|
|
|
|
|
self.predictor = pred
|
|
|
|
|
self.predictor.fit(x_train, y_train)
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# Calculate cross-validation score
|
|
|
|
|
cv_score = np.mean(cross_val_score(pred, x_train, y_train, cv=5))
|
|
|
|
|
dummy_score = max(y_train_avg, 1 - y_train_avg)
|
|
|
|
|
cv_thr = 1. * self.thr_alpha + dummy_score * (1 - self.thr_alpha)
|
|
|
|
|
|
|
|
|
|
# If cross-validation score is too low, don't predict anything.
|
|
|
|
|
if cv_score < cv_thr:
|
|
|
|
|
logger.debug(" Score is too low (%.3f < %.3f); always returning false" % (cv_score, cv_thr))
|
|
|
|
|
self.predictor = 0
|
|
|
|
|
else:
|
|
|
|
|
logger.debug(" Score is acceptable (%.3f > %.3f); training classifier" % (cv_score, cv_thr))
|
|
|
|
|
self.predictor = pred
|
|
|
|
|
self.predictor.fit(x_train, y_train)
|
|
|
|
|
for (min_samples, clf_prototype) in self.available_classifiers:
|
|
|
|
|
if n_samples >= min_samples:
|
|
|
|
|
self.classifier = deepcopy(clf_prototype)
|
|
|
|
|
self.classifier.fit(x_train, y_train)
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
def predict_proba(self, x_test):
|
|
|
|
|
if isinstance(self.predictor, int):
|
|
|
|
|
y_pred = np.zeros((x_test.shape[0], 2))
|
|
|
|
|
y_pred[:, self.predictor] = 1.0
|
|
|
|
|
return y_pred
|
|
|
|
|
else:
|
|
|
|
|
return self.predictor.predict_proba(x_test)
|
|
|
|
|
return self.classifier.predict_proba(x_test)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|