parent
bb42815404
commit
c82de560f4
@ -0,0 +1,70 @@
|
|||||||
|
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||||
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from pyomo.core import Var
|
||||||
|
|
||||||
|
|
||||||
|
class Extractor(ABC):
|
||||||
|
@abstractmethod
|
||||||
|
def extract(self, instances, models):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def split_variables(instance, model):
|
||||||
|
result = {}
|
||||||
|
for var in model.component_objects(Var):
|
||||||
|
for index in var:
|
||||||
|
category = instance.get_variable_category(var, index)
|
||||||
|
if category is None:
|
||||||
|
continue
|
||||||
|
if category not in result.keys():
|
||||||
|
result[category] = []
|
||||||
|
result[category] += [(var, index)]
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
class UserFeaturesExtractor(Extractor):
|
||||||
|
def extract(self,
|
||||||
|
instances,
|
||||||
|
models=None,
|
||||||
|
):
|
||||||
|
result = {}
|
||||||
|
if models is None:
|
||||||
|
models = [instance.to_model() for instance in instances]
|
||||||
|
for (index, instance) in enumerate(instances):
|
||||||
|
model = models[index]
|
||||||
|
instance_features = instance.get_instance_features()
|
||||||
|
var_split = self.split_variables(instance, model)
|
||||||
|
for (category, var_index_pairs) in var_split.items():
|
||||||
|
if category not in result.keys():
|
||||||
|
result[category] = []
|
||||||
|
for (var, index) in var_index_pairs:
|
||||||
|
result[category] += [np.hstack([
|
||||||
|
instance_features,
|
||||||
|
instance.get_variable_features(var, index),
|
||||||
|
])]
|
||||||
|
for category in result.keys():
|
||||||
|
result[category] = np.vstack(result[category])
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
class SolutionExtractor(Extractor):
|
||||||
|
def extract(self, instances, models):
|
||||||
|
result = {}
|
||||||
|
for (index, instance) in enumerate(instances):
|
||||||
|
model = models[index]
|
||||||
|
var_split = self.split_variables(instance, model)
|
||||||
|
for (category, var_index_pairs) in var_split.items():
|
||||||
|
if category not in result.keys():
|
||||||
|
result[category] = []
|
||||||
|
for (var, index) in var_index_pairs:
|
||||||
|
result[category] += [[
|
||||||
|
1 - var[index].value,
|
||||||
|
var[index].value,
|
||||||
|
]]
|
||||||
|
for category in result.keys():
|
||||||
|
result[category] = np.vstack(result[category])
|
||||||
|
return result
|
@ -0,0 +1,54 @@
|
|||||||
|
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||||
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||||
|
|
||||||
|
from miplearn.problems.knapsack import KnapsackInstance
|
||||||
|
from miplearn import (UserFeaturesExtractor,
|
||||||
|
SolutionExtractor)
|
||||||
|
import numpy as np
|
||||||
|
import pyomo.environ as pe
|
||||||
|
|
||||||
|
|
||||||
|
def _get_instances():
|
||||||
|
return [
|
||||||
|
KnapsackInstance(weights=[1., 2., 3.],
|
||||||
|
prices=[10., 20., 30.],
|
||||||
|
capacity=2.5,
|
||||||
|
),
|
||||||
|
KnapsackInstance(weights=[3., 4., 5.],
|
||||||
|
prices=[20., 30., 40.],
|
||||||
|
capacity=4.5,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def test_user_features():
|
||||||
|
instances = _get_instances()
|
||||||
|
extractor = UserFeaturesExtractor()
|
||||||
|
features = extractor.extract(instances)
|
||||||
|
assert isinstance(features, dict)
|
||||||
|
assert "default" in features.keys()
|
||||||
|
assert isinstance(features["default"], np.ndarray)
|
||||||
|
assert features["default"].shape == (6, 4)
|
||||||
|
|
||||||
|
|
||||||
|
def test_solution_extractor():
|
||||||
|
instances = _get_instances()
|
||||||
|
models = [instance.to_model() for instance in instances]
|
||||||
|
for model in models:
|
||||||
|
solver = pe.SolverFactory("cbc")
|
||||||
|
solver.solve(model)
|
||||||
|
extractor = SolutionExtractor()
|
||||||
|
features = extractor.extract(instances, models)
|
||||||
|
assert isinstance(features, dict)
|
||||||
|
assert "default" in features.keys()
|
||||||
|
assert isinstance(features["default"], np.ndarray)
|
||||||
|
assert features["default"].shape == (6, 2)
|
||||||
|
assert features["default"].ravel().tolist() == [
|
||||||
|
1., 0.,
|
||||||
|
0., 1.,
|
||||||
|
1., 0.,
|
||||||
|
1., 0.,
|
||||||
|
0., 1.,
|
||||||
|
1., 0.,
|
||||||
|
]
|
Loading…
Reference in new issue