Implement UserFeaturesExtractor and SolutionExtractor

pull/1/head
Alinson S. Xavier 6 years ago
parent bb42815404
commit c82de560f4

@ -0,0 +1,70 @@
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
import numpy as np
from abc import ABC, abstractmethod
from pyomo.core import Var
class Extractor(ABC):
@abstractmethod
def extract(self, instances, models):
pass
@staticmethod
def split_variables(instance, model):
result = {}
for var in model.component_objects(Var):
for index in var:
category = instance.get_variable_category(var, index)
if category is None:
continue
if category not in result.keys():
result[category] = []
result[category] += [(var, index)]
return result
class UserFeaturesExtractor(Extractor):
def extract(self,
instances,
models=None,
):
result = {}
if models is None:
models = [instance.to_model() for instance in instances]
for (index, instance) in enumerate(instances):
model = models[index]
instance_features = instance.get_instance_features()
var_split = self.split_variables(instance, model)
for (category, var_index_pairs) in var_split.items():
if category not in result.keys():
result[category] = []
for (var, index) in var_index_pairs:
result[category] += [np.hstack([
instance_features,
instance.get_variable_features(var, index),
])]
for category in result.keys():
result[category] = np.vstack(result[category])
return result
class SolutionExtractor(Extractor):
def extract(self, instances, models):
result = {}
for (index, instance) in enumerate(instances):
model = models[index]
var_split = self.split_variables(instance, model)
for (category, var_index_pairs) in var_split.items():
if category not in result.keys():
result[category] = []
for (var, index) in var_index_pairs:
result[category] += [[
1 - var[index].value,
var[index].value,
]]
for category in result.keys():
result[category] = np.vstack(result[category])
return result

@ -0,0 +1,54 @@
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn.problems.knapsack import KnapsackInstance
from miplearn import (UserFeaturesExtractor,
SolutionExtractor)
import numpy as np
import pyomo.environ as pe
def _get_instances():
return [
KnapsackInstance(weights=[1., 2., 3.],
prices=[10., 20., 30.],
capacity=2.5,
),
KnapsackInstance(weights=[3., 4., 5.],
prices=[20., 30., 40.],
capacity=4.5,
),
]
def test_user_features():
instances = _get_instances()
extractor = UserFeaturesExtractor()
features = extractor.extract(instances)
assert isinstance(features, dict)
assert "default" in features.keys()
assert isinstance(features["default"], np.ndarray)
assert features["default"].shape == (6, 4)
def test_solution_extractor():
instances = _get_instances()
models = [instance.to_model() for instance in instances]
for model in models:
solver = pe.SolverFactory("cbc")
solver.solve(model)
extractor = SolutionExtractor()
features = extractor.extract(instances, models)
assert isinstance(features, dict)
assert "default" in features.keys()
assert isinstance(features["default"], np.ndarray)
assert features["default"].shape == (6, 2)
assert features["default"].ravel().tolist() == [
1., 0.,
0., 1.,
1., 0.,
1., 0.,
0., 1.,
1., 0.,
]
Loading…
Cancel
Save