mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Make cuts component compatible with Pyomo+Gurobi
This commit is contained in:
@@ -5,62 +5,69 @@
|
||||
from typing import Any, List, Dict
|
||||
from unittest.mock import Mock
|
||||
|
||||
from sklearn.dummy import DummyClassifier
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
|
||||
from miplearn.components.cuts.mem import MemorizingCutsComponent
|
||||
from miplearn.extractors.abstract import FeaturesExtractor
|
||||
from miplearn.problems.stab import build_stab_model
|
||||
from miplearn.problems.stab import build_stab_model_gurobipy, build_stab_model_pyomo
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
from sklearn.dummy import DummyClassifier
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from typing import Callable
|
||||
|
||||
|
||||
def test_mem_component(
|
||||
stab_h5: List[str],
|
||||
def test_mem_component_gp(
|
||||
stab_gp_h5: List[str],
|
||||
stab_pyo_h5: List[str],
|
||||
default_extractor: FeaturesExtractor,
|
||||
) -> None:
|
||||
clf = Mock(wraps=DummyClassifier())
|
||||
comp = MemorizingCutsComponent(clf=clf, extractor=default_extractor)
|
||||
comp.fit(stab_h5)
|
||||
for h5 in [stab_pyo_h5, stab_gp_h5]:
|
||||
clf = Mock(wraps=DummyClassifier())
|
||||
comp = MemorizingCutsComponent(clf=clf, extractor=default_extractor)
|
||||
comp.fit(h5)
|
||||
|
||||
# Should call fit method with correct arguments
|
||||
clf.fit.assert_called()
|
||||
x, y = clf.fit.call_args.args
|
||||
assert x.shape == (3, 50)
|
||||
assert y.shape == (3, 388)
|
||||
y = y.tolist()
|
||||
assert y[0][:20] == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
|
||||
assert y[1][:20] == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1]
|
||||
assert y[2][:20] == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1]
|
||||
# Should call fit method with correct arguments
|
||||
clf.fit.assert_called()
|
||||
x, y = clf.fit.call_args.args
|
||||
assert x.shape == (3, 50)
|
||||
assert y.shape == (3, 415)
|
||||
y = y.tolist()
|
||||
assert y[0][:20] == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
|
||||
assert y[1][:20] == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
|
||||
assert y[2][:20] == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1]
|
||||
|
||||
# Should store violations
|
||||
assert comp.constrs_ is not None
|
||||
assert comp.n_features_ == 50
|
||||
assert comp.n_targets_ == 388
|
||||
assert len(comp.constrs_) == 388
|
||||
# Should store violations
|
||||
assert comp.constrs_ is not None
|
||||
assert comp.n_features_ == 50
|
||||
assert comp.n_targets_ == 415
|
||||
assert len(comp.constrs_) == 415
|
||||
|
||||
# Call before-mip
|
||||
stats: Dict[str, Any] = {}
|
||||
model = Mock()
|
||||
comp.before_mip(stab_h5[0], model, stats)
|
||||
# Call before-mip
|
||||
stats: Dict[str, Any] = {}
|
||||
model = Mock()
|
||||
comp.before_mip(h5[0], model, stats)
|
||||
|
||||
# Should call predict with correct args
|
||||
clf.predict.assert_called()
|
||||
(x_test,) = clf.predict.call_args.args
|
||||
assert x_test.shape == (1, 50)
|
||||
# Should call predict with correct args
|
||||
clf.predict.assert_called()
|
||||
(x_test,) = clf.predict.call_args.args
|
||||
assert x_test.shape == (1, 50)
|
||||
|
||||
# Should set cuts_aot_
|
||||
assert model.cuts_aot_ is not None
|
||||
assert len(model.cuts_aot_) == 243
|
||||
# Should set cuts_aot_
|
||||
assert model.cuts_aot_ is not None
|
||||
assert len(model.cuts_aot_) == 285
|
||||
|
||||
|
||||
def test_usage_stab(
|
||||
stab_h5: List[str],
|
||||
stab_gp_h5: List[str],
|
||||
stab_pyo_h5: List[str],
|
||||
default_extractor: FeaturesExtractor,
|
||||
) -> None:
|
||||
data_filenames = [f.replace(".h5", ".pkl.gz") for f in stab_h5]
|
||||
clf = KNeighborsClassifier(n_neighbors=1)
|
||||
comp = MemorizingCutsComponent(clf=clf, extractor=default_extractor)
|
||||
solver = LearningSolver(components=[comp])
|
||||
solver.fit(data_filenames)
|
||||
stats = solver.optimize(data_filenames[0], build_stab_model)
|
||||
assert stats["Cuts: AOT"] > 0
|
||||
for (h5, build_model) in [
|
||||
(stab_pyo_h5, build_stab_model_pyomo),
|
||||
(stab_gp_h5, build_stab_model_gurobipy),
|
||||
]:
|
||||
data_filenames = [f.replace(".h5", ".pkl.gz") for f in h5]
|
||||
clf = KNeighborsClassifier(n_neighbors=1)
|
||||
comp = MemorizingCutsComponent(clf=clf, extractor=default_extractor)
|
||||
solver = LearningSolver(components=[comp])
|
||||
solver.fit(data_filenames)
|
||||
stats = solver.optimize(data_filenames[0], build_model) # type: ignore
|
||||
assert stats["Cuts: AOT"] > 0
|
||||
|
||||
@@ -52,8 +52,13 @@ def tsp_h5(request: Any) -> List[str]:
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def stab_h5(request: Any) -> List[str]:
|
||||
return _h5_fixture("stab*.h5", request)
|
||||
def stab_gp_h5(request: Any) -> List[str]:
|
||||
return _h5_fixture("stab-gp*.h5", request)
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def stab_pyo_h5(request: Any) -> List[str]:
|
||||
return _h5_fixture("stab-pyo*.h5", request)
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
|
||||
27
tests/fixtures/gen_stab.py
vendored
27
tests/fixtures/gen_stab.py
vendored
@@ -7,9 +7,11 @@ from miplearn.collectors.basic import BasicCollector
|
||||
from miplearn.io import write_pkl_gz
|
||||
from miplearn.problems.stab import (
|
||||
MaxWeightStableSetGenerator,
|
||||
build_stab_model,
|
||||
build_stab_model_gurobipy,
|
||||
build_stab_model_pyomo,
|
||||
)
|
||||
|
||||
|
||||
np.random.seed(42)
|
||||
gen = MaxWeightStableSetGenerator(
|
||||
w=uniform(10.0, scale=1.0),
|
||||
@@ -18,6 +20,25 @@ gen = MaxWeightStableSetGenerator(
|
||||
fix_graph=True,
|
||||
)
|
||||
data = gen.generate(3)
|
||||
data_filenames = write_pkl_gz(data, dirname(__file__), prefix="stab-n50-")
|
||||
|
||||
params = {"seed": 42, "threads": 1}
|
||||
|
||||
# Gurobipy
|
||||
data_filenames = write_pkl_gz(data, dirname(__file__), prefix="stab-gp-n50-")
|
||||
collector = BasicCollector()
|
||||
collector.collect(data_filenames, build_stab_model)
|
||||
collector.collect(
|
||||
data_filenames,
|
||||
lambda data: build_stab_model_gurobipy(data, params=params),
|
||||
progress=True,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
# Pyomo
|
||||
data_filenames = write_pkl_gz(data, dirname(__file__), prefix="stab-pyo-n50-")
|
||||
collector = BasicCollector()
|
||||
collector.collect(
|
||||
data_filenames,
|
||||
lambda model: build_stab_model_pyomo(model, params=params),
|
||||
progress=True,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
BIN
tests/fixtures/stab-gp-n50-00000.h5
vendored
Normal file
BIN
tests/fixtures/stab-gp-n50-00000.h5
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-gp-n50-00000.mps.gz
vendored
Normal file
BIN
tests/fixtures/stab-gp-n50-00000.mps.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-gp-n50-00000.pkl.gz
vendored
Normal file
BIN
tests/fixtures/stab-gp-n50-00000.pkl.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-gp-n50-00001.h5
vendored
Normal file
BIN
tests/fixtures/stab-gp-n50-00001.h5
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-gp-n50-00001.mps.gz
vendored
Normal file
BIN
tests/fixtures/stab-gp-n50-00001.mps.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-gp-n50-00001.pkl.gz
vendored
Normal file
BIN
tests/fixtures/stab-gp-n50-00001.pkl.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-gp-n50-00002.h5
vendored
Normal file
BIN
tests/fixtures/stab-gp-n50-00002.h5
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-gp-n50-00002.mps.gz
vendored
Normal file
BIN
tests/fixtures/stab-gp-n50-00002.mps.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-gp-n50-00002.pkl.gz
vendored
Normal file
BIN
tests/fixtures/stab-gp-n50-00002.pkl.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-n50-00000.h5
vendored
BIN
tests/fixtures/stab-n50-00000.h5
vendored
Binary file not shown.
BIN
tests/fixtures/stab-n50-00000.mps.gz
vendored
BIN
tests/fixtures/stab-n50-00000.mps.gz
vendored
Binary file not shown.
BIN
tests/fixtures/stab-n50-00000.pkl.gz
vendored
BIN
tests/fixtures/stab-n50-00000.pkl.gz
vendored
Binary file not shown.
BIN
tests/fixtures/stab-n50-00001.h5
vendored
BIN
tests/fixtures/stab-n50-00001.h5
vendored
Binary file not shown.
BIN
tests/fixtures/stab-n50-00001.mps.gz
vendored
BIN
tests/fixtures/stab-n50-00001.mps.gz
vendored
Binary file not shown.
BIN
tests/fixtures/stab-n50-00001.pkl.gz
vendored
BIN
tests/fixtures/stab-n50-00001.pkl.gz
vendored
Binary file not shown.
BIN
tests/fixtures/stab-n50-00002.h5
vendored
BIN
tests/fixtures/stab-n50-00002.h5
vendored
Binary file not shown.
BIN
tests/fixtures/stab-n50-00002.mps.gz
vendored
BIN
tests/fixtures/stab-n50-00002.mps.gz
vendored
Binary file not shown.
BIN
tests/fixtures/stab-n50-00002.pkl.gz
vendored
BIN
tests/fixtures/stab-n50-00002.pkl.gz
vendored
Binary file not shown.
BIN
tests/fixtures/stab-pyo-n50-00000.h5
vendored
Normal file
BIN
tests/fixtures/stab-pyo-n50-00000.h5
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-pyo-n50-00000.mps.gz
vendored
Normal file
BIN
tests/fixtures/stab-pyo-n50-00000.mps.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-pyo-n50-00000.pkl.gz
vendored
Normal file
BIN
tests/fixtures/stab-pyo-n50-00000.pkl.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-pyo-n50-00001.h5
vendored
Normal file
BIN
tests/fixtures/stab-pyo-n50-00001.h5
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-pyo-n50-00001.mps.gz
vendored
Normal file
BIN
tests/fixtures/stab-pyo-n50-00001.mps.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-pyo-n50-00001.pkl.gz
vendored
Normal file
BIN
tests/fixtures/stab-pyo-n50-00001.pkl.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-pyo-n50-00002.h5
vendored
Normal file
BIN
tests/fixtures/stab-pyo-n50-00002.h5
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-pyo-n50-00002.mps.gz
vendored
Normal file
BIN
tests/fixtures/stab-pyo-n50-00002.mps.gz
vendored
Normal file
Binary file not shown.
BIN
tests/fixtures/stab-pyo-n50-00002.pkl.gz
vendored
Normal file
BIN
tests/fixtures/stab-pyo-n50-00002.pkl.gz
vendored
Normal file
Binary file not shown.
@@ -9,7 +9,8 @@ import numpy as np
|
||||
from miplearn.h5 import H5File
|
||||
from miplearn.problems.stab import (
|
||||
MaxWeightStableSetData,
|
||||
build_stab_model,
|
||||
build_stab_model_gurobipy,
|
||||
build_stab_model_pyomo,
|
||||
)
|
||||
from miplearn.solvers.abstract import AbstractModel
|
||||
|
||||
@@ -20,7 +21,8 @@ def test_stab() -> None:
|
||||
weights=np.array([1.0, 1.0, 1.0, 1.0, 1.0]),
|
||||
)
|
||||
for model in [
|
||||
build_stab_model(data),
|
||||
build_stab_model_gurobipy(data),
|
||||
build_stab_model_pyomo(data),
|
||||
]:
|
||||
assert isinstance(model, AbstractModel)
|
||||
with NamedTemporaryFile() as tempfile:
|
||||
|
||||
Reference in New Issue
Block a user