mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-05 17:08:51 -06:00
Reformat; remove unused imports
This commit is contained in:
@@ -166,7 +166,7 @@
|
||||
"\n",
|
||||
" # Extract and print constraint features\n",
|
||||
" x3 = ext.get_constr_features(h5)\n",
|
||||
" print(\"constraint features\", x3.shape, \"\\n\", x3)\n"
|
||||
" print(\"constraint features\", x3.shape, \"\\n\", x3)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -120,7 +120,7 @@
|
||||
" extractor=H5FieldsExtractor(instance_fields=[\"static_var_obj_coeffs\"]),\n",
|
||||
" constructor=MergeTopSolutions(k=3, thresholds=[0.25, 0.75]),\n",
|
||||
" action=EnforceProximity(3),\n",
|
||||
")\n"
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -175,7 +175,7 @@
|
||||
" ),\n",
|
||||
" extractor=AlvLouWeh2017Extractor(),\n",
|
||||
" action=SetWarmStart(),\n",
|
||||
")\n"
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -230,7 +230,7 @@
|
||||
" instance_fields=[\"static_var_obj_coeffs\"],\n",
|
||||
" ),\n",
|
||||
" action=SetWarmStart(),\n",
|
||||
")\n"
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -263,7 +263,7 @@
|
||||
"# Configures an expert primal component, which reads a pre-computed\n",
|
||||
"# optimal solution from the HDF5 file and provides it to the solver\n",
|
||||
"# as warm start.\n",
|
||||
"comp = ExpertPrimalComponent(action=SetWarmStart())\n"
|
||||
"comp = ExpertPrimalComponent(action=SetWarmStart())"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -194,7 +194,7 @@
|
||||
"\n",
|
||||
"# Optimize first instance\n",
|
||||
"model = build_binpack_model(data[0])\n",
|
||||
"model.optimize()\n"
|
||||
"model.optimize()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -397,7 +397,7 @@
|
||||
"\n",
|
||||
"# Build model and optimize\n",
|
||||
"model = build_multiknapsack_model(data[0])\n",
|
||||
"model.optimize()\n"
|
||||
"model.optimize()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -577,7 +577,7 @@
|
||||
"\n",
|
||||
"# Build and optimize model\n",
|
||||
"model = build_pmedian_model(data[0])\n",
|
||||
"model.optimize()\n"
|
||||
"model.optimize()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -726,7 +726,7 @@
|
||||
"\n",
|
||||
"# Build and optimize model\n",
|
||||
"model = build_setcover_model_gurobipy(data[0])\n",
|
||||
"model.optimize()\n"
|
||||
"model.optimize()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -862,7 +862,7 @@
|
||||
"\n",
|
||||
"# Build and optimize model\n",
|
||||
"model = build_setpack_model(data[0])\n",
|
||||
"model.optimize()\n"
|
||||
"model.optimize()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -999,7 +999,7 @@
|
||||
"\n",
|
||||
"# Load and optimize the first instance\n",
|
||||
"model = build_stab_model(data[0])\n",
|
||||
"model.optimize()\n"
|
||||
"model.optimize()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -1174,7 +1174,7 @@
|
||||
"\n",
|
||||
"# Load and optimize the first instance\n",
|
||||
"model = build_tsp_model(data[0])\n",
|
||||
"model.optimize()\n"
|
||||
"model.optimize()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -1412,7 +1412,7 @@
|
||||
"\n",
|
||||
"# Load and optimize the first instance\n",
|
||||
"model = build_uc_model(data[0])\n",
|
||||
"model.optimize()\n"
|
||||
"model.optimize()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -1553,7 +1553,7 @@
|
||||
"\n",
|
||||
"# Load and optimize the first instance\n",
|
||||
"model = build_vertexcover_model(data[0])\n",
|
||||
"model.optimize()\n"
|
||||
"model.optimize()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -2,30 +2,16 @@
|
||||
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import Any, List, Hashable, Dict
|
||||
from typing import Any, List, Dict
|
||||
from unittest.mock import Mock
|
||||
|
||||
import gurobipy as gp
|
||||
import networkx as nx
|
||||
from gurobipy import GRB, quicksum
|
||||
from sklearn.dummy import DummyClassifier
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
|
||||
from miplearn.components.cuts.mem import MemorizingCutsComponent
|
||||
from miplearn.extractors.abstract import FeaturesExtractor
|
||||
from miplearn.problems.stab import build_stab_model
|
||||
from miplearn.solvers.gurobi import GurobiModel
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
import numpy as np
|
||||
|
||||
|
||||
# def test_usage() -> None:
|
||||
# model = _build_cut_model()
|
||||
# solver = LearningSolver(components=[])
|
||||
# solver.optimize(model)
|
||||
# assert model.cuts_ is not None
|
||||
# assert len(model.cuts_) > 0
|
||||
# assert False
|
||||
|
||||
|
||||
def test_mem_component(
|
||||
|
||||
Reference in New Issue
Block a user