|
|
|
@ -52,10 +52,11 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
|
|
|
|
)
|
|
|
|
|
y = self.predict(x)
|
|
|
|
|
|
|
|
|
|
self.total_converted = 0
|
|
|
|
|
self.total_restored = 0
|
|
|
|
|
self.total_kept = 0
|
|
|
|
|
self.total_iterations = 0
|
|
|
|
|
self.n_converted = 0
|
|
|
|
|
self.n_restored = 0
|
|
|
|
|
self.n_kept = 0
|
|
|
|
|
self.n_infeasible_iterations = 0
|
|
|
|
|
self.n_suboptimal_iterations = 0
|
|
|
|
|
for category in y.keys():
|
|
|
|
|
for i in range(len(y[category])):
|
|
|
|
|
if y[category][i][0] == 1:
|
|
|
|
@ -64,17 +65,18 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
|
|
|
|
self.original_sense[cid] = s
|
|
|
|
|
solver.internal_solver.set_constraint_sense(cid, "=")
|
|
|
|
|
self.converted += [cid]
|
|
|
|
|
self.total_converted += 1
|
|
|
|
|
self.n_converted += 1
|
|
|
|
|
else:
|
|
|
|
|
self.total_kept += 1
|
|
|
|
|
logger.info(f"Converted {self.total_converted} inequalities")
|
|
|
|
|
self.n_kept += 1
|
|
|
|
|
logger.info(f"Converted {self.n_converted} inequalities")
|
|
|
|
|
|
|
|
|
|
def after_solve(self, solver, instance, model, results):
|
|
|
|
|
instance.slacks = solver.internal_solver.get_inequality_slacks()
|
|
|
|
|
results["ConvertTight: Kept"] = self.total_kept
|
|
|
|
|
results["ConvertTight: Converted"] = self.total_converted
|
|
|
|
|
results["ConvertTight: Restored"] = self.total_restored
|
|
|
|
|
results["ConvertTight: Iterations"] = self.total_iterations
|
|
|
|
|
results["ConvertTight: Kept"] = self.n_kept
|
|
|
|
|
results["ConvertTight: Converted"] = self.n_converted
|
|
|
|
|
results["ConvertTight: Restored"] = self.n_restored
|
|
|
|
|
results["ConvertTight: Inf iterations"] = self.n_infeasible_iterations
|
|
|
|
|
results["ConvertTight: Subopt iterations"] = self.n_suboptimal_iterations
|
|
|
|
|
|
|
|
|
|
def fit(self, training_instances):
|
|
|
|
|
logger.debug("Extracting x and y...")
|
|
|
|
@ -173,21 +175,56 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
|
|
|
|
def iteration_cb(self, solver, instance, model):
|
|
|
|
|
if not self.check_converted:
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
logger.debug("Checking converted inequalities...")
|
|
|
|
|
is_infeasible, is_suboptimal = False, False
|
|
|
|
|
restored = []
|
|
|
|
|
|
|
|
|
|
def check_pi(msense, csense, pi):
|
|
|
|
|
if csense == "=":
|
|
|
|
|
return True
|
|
|
|
|
if msense == "max":
|
|
|
|
|
if csense == "<":
|
|
|
|
|
return pi >= 0
|
|
|
|
|
else:
|
|
|
|
|
return pi <= 0
|
|
|
|
|
else:
|
|
|
|
|
if csense == ">":
|
|
|
|
|
return pi >= 0
|
|
|
|
|
else:
|
|
|
|
|
return pi <= 0
|
|
|
|
|
|
|
|
|
|
def restore(cid):
|
|
|
|
|
nonlocal restored
|
|
|
|
|
csense = self.original_sense[cid]
|
|
|
|
|
solver.internal_solver.set_constraint_sense(cid, csense)
|
|
|
|
|
restored += [cid]
|
|
|
|
|
|
|
|
|
|
if solver.internal_solver.is_infeasible():
|
|
|
|
|
for cid in self.converted:
|
|
|
|
|
f = solver.internal_solver.get_farkas_dual(cid)
|
|
|
|
|
if abs(f) > 0:
|
|
|
|
|
s = self.original_sense[cid]
|
|
|
|
|
solver.internal_solver.set_constraint_sense(cid, s)
|
|
|
|
|
restored += [cid]
|
|
|
|
|
pi = solver.internal_solver.get_dual(cid)
|
|
|
|
|
if abs(pi) > 0:
|
|
|
|
|
is_infeasible = True
|
|
|
|
|
restore(cid)
|
|
|
|
|
else:
|
|
|
|
|
for cid in self.converted:
|
|
|
|
|
pi = solver.internal_solver.get_dual(cid)
|
|
|
|
|
csense = self.original_sense[cid]
|
|
|
|
|
msense = solver.internal_solver.get_sense()
|
|
|
|
|
if not check_pi(msense, csense, pi):
|
|
|
|
|
is_suboptimal = True
|
|
|
|
|
restore(cid)
|
|
|
|
|
|
|
|
|
|
for cid in restored:
|
|
|
|
|
self.converted.remove(cid)
|
|
|
|
|
|
|
|
|
|
if len(restored) > 0:
|
|
|
|
|
self.total_restored += len(restored)
|
|
|
|
|
self.n_restored += len(restored)
|
|
|
|
|
if is_infeasible:
|
|
|
|
|
self.n_infeasible_iterations += 1
|
|
|
|
|
if is_suboptimal:
|
|
|
|
|
self.n_suboptimal_iterations += 1
|
|
|
|
|
logger.info(f"Restored {len(restored)} inequalities")
|
|
|
|
|
self.total_iterations += 1
|
|
|
|
|
return True
|
|
|
|
|
else:
|
|
|
|
|
return False
|
|
|
|
|