Convert VariableFeatures into dataclass

This commit is contained in:
2021-04-04 22:56:26 -05:00
parent 59f4f75a53
commit d79eec5da6
6 changed files with 97 additions and 87 deletions

View File

@@ -136,7 +136,7 @@ class PrimalSolutionComponent(Component):
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
for (var_name, var_dict) in features.variables.items():
for (idx, var_features) in var_dict.items():
category = var_features["Category"]
category = var_features.category
offset = category_offset[category]
category_offset[category] += 1
if y_pred[category][offset, 0]:
@@ -159,15 +159,15 @@ class PrimalSolutionComponent(Component):
solution = sample["Solution"]
for (var_name, var_dict) in features.variables.items():
for (idx, var_features) in var_dict.items():
category = var_features["Category"]
category = var_features.category
if category is None:
continue
if category not in x.keys():
x[category] = []
y[category] = []
f: List[float] = []
assert var_features["User features"] is not None
f += var_features["User features"]
assert var_features.user_features is not None
f += var_features.user_features
if "LP solution" in sample and sample["LP solution"] is not None:
lp_value = sample["LP solution"][var_name][idx]
if lp_value is not None:

View File

@@ -4,9 +4,15 @@
import numbers
import collections
from typing import TYPE_CHECKING, Dict
from typing import TYPE_CHECKING, Dict, Hashable
from miplearn.types import Features, ConstraintFeatures, InstanceFeatures
from miplearn.types import (
Features,
ConstraintFeatures,
InstanceFeatures,
VariableFeatures,
VarIndex,
)
if TYPE_CHECKING:
from miplearn import InternalSolver, Instance
@@ -24,9 +30,14 @@ class FeaturesExtractor:
instance.features.constraints = self._extract_constraints(instance)
instance.features.instance = self._extract_instance(instance, instance.features)
def _extract_variables(self, instance: "Instance") -> Dict:
variables = self.solver.get_empty_solution()
for (var_name, var_dict) in variables.items():
def _extract_variables(
self,
instance: "Instance",
) -> Dict[str, Dict[VarIndex, VariableFeatures]]:
result: Dict[str, Dict[VarIndex, VariableFeatures]] = {}
empty_solution = self.solver.get_empty_solution()
for (var_name, var_dict) in empty_solution.items():
result[var_name] = {}
for idx in var_dict.keys():
user_features = None
category = instance.get_variable_category(var_name, idx)
@@ -47,11 +58,11 @@ class FeaturesExtractor:
f"Found {type(v).__name__} instead "
f"for var={var_name}[{idx}]."
)
var_dict[idx] = {
"Category": category,
"User features": user_features,
}
return variables
result[var_name][idx] = VariableFeatures(
category=category,
user_features=user_features,
)
return result
def _extract_constraints(
self,

View File

@@ -274,7 +274,7 @@ class InternalSolver(ABC):
pass
@abstractmethod
def get_empty_solution(self) -> Dict:
def get_empty_solution(self) -> Dict[str, Dict[VarIndex, Optional[float]]]:
"""
Returns a dictionary with the same shape as the one produced by
`get_solution`, but with all values set to None. This method is

View File

@@ -87,14 +87,12 @@ InstanceFeatures = TypedDict(
total=False,
)
VariableFeatures = TypedDict(
"VariableFeatures",
{
"Category": Optional[Hashable],
"User features": Optional[List[float]],
},
total=False,
)
@dataclass
class VariableFeatures:
category: Optional[Hashable] = None
user_features: Optional[List[float]] = None
ConstraintFeatures = TypedDict(
"ConstraintFeatures",