mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Convert VariableFeatures into dataclass
This commit is contained in:
@@ -136,7 +136,7 @@ class PrimalSolutionComponent(Component):
|
||||
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
||||
for (var_name, var_dict) in features.variables.items():
|
||||
for (idx, var_features) in var_dict.items():
|
||||
category = var_features["Category"]
|
||||
category = var_features.category
|
||||
offset = category_offset[category]
|
||||
category_offset[category] += 1
|
||||
if y_pred[category][offset, 0]:
|
||||
@@ -159,15 +159,15 @@ class PrimalSolutionComponent(Component):
|
||||
solution = sample["Solution"]
|
||||
for (var_name, var_dict) in features.variables.items():
|
||||
for (idx, var_features) in var_dict.items():
|
||||
category = var_features["Category"]
|
||||
category = var_features.category
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x.keys():
|
||||
x[category] = []
|
||||
y[category] = []
|
||||
f: List[float] = []
|
||||
assert var_features["User features"] is not None
|
||||
f += var_features["User features"]
|
||||
assert var_features.user_features is not None
|
||||
f += var_features.user_features
|
||||
if "LP solution" in sample and sample["LP solution"] is not None:
|
||||
lp_value = sample["LP solution"][var_name][idx]
|
||||
if lp_value is not None:
|
||||
|
||||
@@ -4,9 +4,15 @@
|
||||
|
||||
import numbers
|
||||
import collections
|
||||
from typing import TYPE_CHECKING, Dict
|
||||
from typing import TYPE_CHECKING, Dict, Hashable
|
||||
|
||||
from miplearn.types import Features, ConstraintFeatures, InstanceFeatures
|
||||
from miplearn.types import (
|
||||
Features,
|
||||
ConstraintFeatures,
|
||||
InstanceFeatures,
|
||||
VariableFeatures,
|
||||
VarIndex,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from miplearn import InternalSolver, Instance
|
||||
@@ -24,9 +30,14 @@ class FeaturesExtractor:
|
||||
instance.features.constraints = self._extract_constraints(instance)
|
||||
instance.features.instance = self._extract_instance(instance, instance.features)
|
||||
|
||||
def _extract_variables(self, instance: "Instance") -> Dict:
|
||||
variables = self.solver.get_empty_solution()
|
||||
for (var_name, var_dict) in variables.items():
|
||||
def _extract_variables(
|
||||
self,
|
||||
instance: "Instance",
|
||||
) -> Dict[str, Dict[VarIndex, VariableFeatures]]:
|
||||
result: Dict[str, Dict[VarIndex, VariableFeatures]] = {}
|
||||
empty_solution = self.solver.get_empty_solution()
|
||||
for (var_name, var_dict) in empty_solution.items():
|
||||
result[var_name] = {}
|
||||
for idx in var_dict.keys():
|
||||
user_features = None
|
||||
category = instance.get_variable_category(var_name, idx)
|
||||
@@ -47,11 +58,11 @@ class FeaturesExtractor:
|
||||
f"Found {type(v).__name__} instead "
|
||||
f"for var={var_name}[{idx}]."
|
||||
)
|
||||
var_dict[idx] = {
|
||||
"Category": category,
|
||||
"User features": user_features,
|
||||
}
|
||||
return variables
|
||||
result[var_name][idx] = VariableFeatures(
|
||||
category=category,
|
||||
user_features=user_features,
|
||||
)
|
||||
return result
|
||||
|
||||
def _extract_constraints(
|
||||
self,
|
||||
|
||||
@@ -274,7 +274,7 @@ class InternalSolver(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_empty_solution(self) -> Dict:
|
||||
def get_empty_solution(self) -> Dict[str, Dict[VarIndex, Optional[float]]]:
|
||||
"""
|
||||
Returns a dictionary with the same shape as the one produced by
|
||||
`get_solution`, but with all values set to None. This method is
|
||||
|
||||
@@ -87,14 +87,12 @@ InstanceFeatures = TypedDict(
|
||||
total=False,
|
||||
)
|
||||
|
||||
VariableFeatures = TypedDict(
|
||||
"VariableFeatures",
|
||||
{
|
||||
"Category": Optional[Hashable],
|
||||
"User features": Optional[List[float]],
|
||||
},
|
||||
total=False,
|
||||
)
|
||||
|
||||
@dataclass
|
||||
class VariableFeatures:
|
||||
category: Optional[Hashable] = None
|
||||
user_features: Optional[List[float]] = None
|
||||
|
||||
|
||||
ConstraintFeatures = TypedDict(
|
||||
"ConstraintFeatures",
|
||||
|
||||
@@ -13,28 +13,28 @@ from miplearn.classifiers.threshold import Threshold
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.primal import PrimalSolutionComponent
|
||||
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
||||
from miplearn.types import TrainingSample, Features
|
||||
from miplearn.types import TrainingSample, Features, VariableFeatures
|
||||
|
||||
|
||||
def test_xy() -> None:
|
||||
features = Features(
|
||||
variables={
|
||||
"x": {
|
||||
0: {
|
||||
"Category": "default",
|
||||
"User features": [0.0, 0.0],
|
||||
},
|
||||
1: {
|
||||
"Category": None,
|
||||
},
|
||||
2: {
|
||||
"Category": "default",
|
||||
"User features": [1.0, 0.0],
|
||||
},
|
||||
3: {
|
||||
"Category": "default",
|
||||
"User features": [1.0, 1.0],
|
||||
},
|
||||
0: VariableFeatures(
|
||||
category="default",
|
||||
user_features=[0.0, 0.0],
|
||||
),
|
||||
1: VariableFeatures(
|
||||
category=None,
|
||||
),
|
||||
2: VariableFeatures(
|
||||
category="default",
|
||||
user_features=[1.0, 0.0],
|
||||
),
|
||||
3: VariableFeatures(
|
||||
category="default",
|
||||
user_features=[1.0, 1.0],
|
||||
),
|
||||
}
|
||||
}
|
||||
)
|
||||
@@ -81,21 +81,21 @@ def test_xy_without_lp_solution() -> None:
|
||||
features = Features(
|
||||
variables={
|
||||
"x": {
|
||||
0: {
|
||||
"Category": "default",
|
||||
"User features": [0.0, 0.0],
|
||||
},
|
||||
1: {
|
||||
"Category": None,
|
||||
},
|
||||
2: {
|
||||
"Category": "default",
|
||||
"User features": [1.0, 0.0],
|
||||
},
|
||||
3: {
|
||||
"Category": "default",
|
||||
"User features": [1.0, 1.0],
|
||||
},
|
||||
0: VariableFeatures(
|
||||
category="default",
|
||||
user_features=[0.0, 0.0],
|
||||
),
|
||||
1: VariableFeatures(
|
||||
category=None,
|
||||
),
|
||||
2: VariableFeatures(
|
||||
category="default",
|
||||
user_features=[1.0, 0.0],
|
||||
),
|
||||
3: VariableFeatures(
|
||||
category="default",
|
||||
user_features=[1.0, 1.0],
|
||||
),
|
||||
}
|
||||
}
|
||||
)
|
||||
@@ -146,18 +146,18 @@ def test_predict() -> None:
|
||||
features = Features(
|
||||
variables={
|
||||
"x": {
|
||||
0: {
|
||||
"Category": "default",
|
||||
"User features": [0.0, 0.0],
|
||||
},
|
||||
1: {
|
||||
"Category": "default",
|
||||
"User features": [0.0, 2.0],
|
||||
},
|
||||
2: {
|
||||
"Category": "default",
|
||||
"User features": [2.0, 0.0],
|
||||
},
|
||||
0: VariableFeatures(
|
||||
category="default",
|
||||
user_features=[0.0, 0.0],
|
||||
),
|
||||
1: VariableFeatures(
|
||||
category="default",
|
||||
user_features=[0.0, 2.0],
|
||||
),
|
||||
2: VariableFeatures(
|
||||
category="default",
|
||||
user_features=[2.0, 0.0],
|
||||
),
|
||||
}
|
||||
}
|
||||
)
|
||||
@@ -246,11 +246,11 @@ def test_evaluate() -> None:
|
||||
features = Features(
|
||||
variables={
|
||||
"x": {
|
||||
0: {},
|
||||
1: {},
|
||||
2: {},
|
||||
3: {},
|
||||
4: {},
|
||||
0: VariableFeatures(),
|
||||
1: VariableFeatures(),
|
||||
2: VariableFeatures(),
|
||||
3: VariableFeatures(),
|
||||
4: VariableFeatures(),
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
|
||||
from miplearn import GurobiSolver
|
||||
from miplearn.features import FeaturesExtractor
|
||||
from miplearn.types import VariableFeatures
|
||||
from tests.fixtures.knapsack import get_knapsack_instance
|
||||
|
||||
|
||||
@@ -16,22 +17,22 @@ def test_knapsack() -> None:
|
||||
FeaturesExtractor(solver).extract(instance)
|
||||
assert instance.features.variables == {
|
||||
"x": {
|
||||
0: {
|
||||
"Category": "default",
|
||||
"User features": [23.0, 505.0],
|
||||
},
|
||||
1: {
|
||||
"Category": "default",
|
||||
"User features": [26.0, 352.0],
|
||||
},
|
||||
2: {
|
||||
"Category": "default",
|
||||
"User features": [20.0, 458.0],
|
||||
},
|
||||
3: {
|
||||
"Category": "default",
|
||||
"User features": [18.0, 220.0],
|
||||
},
|
||||
0: VariableFeatures(
|
||||
category="default",
|
||||
user_features=[23.0, 505.0],
|
||||
),
|
||||
1: VariableFeatures(
|
||||
category="default",
|
||||
user_features=[26.0, 352.0],
|
||||
),
|
||||
2: VariableFeatures(
|
||||
category="default",
|
||||
user_features=[20.0, 458.0],
|
||||
),
|
||||
3: VariableFeatures(
|
||||
category="default",
|
||||
user_features=[18.0, 220.0],
|
||||
),
|
||||
}
|
||||
}
|
||||
assert instance.features.constraints == {
|
||||
|
||||
Reference in New Issue
Block a user