Benchmark: Remove unused save_chart; load multiple results

master
Alinson S. Xavier 5 years ago
parent f05db85df8
commit d7aac56bd9
No known key found for this signature in database
GPG Key ID: A796166E4E218E02

@ -66,7 +66,7 @@ class BenchmarkRunner:
self.results.to_csv(filename)
def load_results(self, filename):
self.results = pd.read_csv(filename, index_col=0)
self.results = pd.concat([self.results, pd.read_csv(filename, index_col=0)])
def load_state(self, filename):
for (solver_name, solver) in self.solvers.items():
@ -113,91 +113,6 @@ class BenchmarkRunner:
self.results["Relative Gap"] = self.results["Gap"] / best_gap
self.results["Relative Nodes"] = self.results["Nodes"] / best_nodes
def save_chart(self, filename):
import matplotlib.pyplot as plt
import seaborn as sns
from numpy import median
sns.set_style("whitegrid")
sns.set_palette("Blues_r")
results = self.raw_results()
results["Gap (%)"] = results["Gap"] * 100.0
sense = results.loc[0, "Sense"]
if sense == "min":
primal_column = "Relative upper bound"
obj_column = "Upper bound"
predicted_obj_column = "Predicted UB"
else:
primal_column = "Relative lower bound"
obj_column = "Lower bound"
predicted_obj_column = "Predicted LB"
fig, (ax1, ax2, ax3, ax4) = plt.subplots(
nrows=1,
ncols=4,
figsize=(12, 4),
gridspec_kw={"width_ratios": [2, 1, 1, 2]},
)
# Figure 1: Solver x Wallclock time
sns.stripplot(
x="Solver",
y="Wallclock time",
data=results,
ax=ax1,
jitter=0.25,
size=4.0,
)
sns.barplot(
x="Solver",
y="Wallclock time",
data=results,
ax=ax1,
errwidth=0.0,
alpha=0.4,
estimator=median,
)
ax1.set(ylabel="Wallclock time (s)")
# Figure 2: Solver x Gap (%)
ax2.set_ylim(-0.5, 5.5)
sns.stripplot(
x="Solver",
y="Gap (%)",
jitter=0.25,
data=results[results["Mode"] != "heuristic"],
ax=ax2,
size=4.0,
)
# Figure 3: Solver x Primal Value
ax3.set_ylim(0.95, 1.05)
sns.stripplot(
x="Solver",
y=primal_column,
jitter=0.25,
data=results[results["Mode"] == "heuristic"],
ax=ax3,
)
# Figure 4: Predicted vs Actual Objective Value
sns.scatterplot(
x=obj_column,
y=predicted_obj_column,
hue="Solver",
data=results[results["Mode"] != "heuristic"],
ax=ax4,
)
xlim, ylim = ax4.get_xlim(), ax4.get_ylim()
ax4.plot([-1e10, 1e10], [-1e10, 1e10], ls="-", color="#cccccc")
ax4.set_xlim(xlim)
ax4.set_ylim(ylim)
ax4.get_legend().remove()
fig.tight_layout()
plt.savefig(filename, bbox_inches="tight", dpi=150)
def _silence_miplearn_logger(self):
miplearn_logger = logging.getLogger("miplearn")
self.prev_log_level = miplearn_logger.getEffectiveLevel()

Loading…
Cancel
Save