mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-07 09:58:51 -06:00
Benchmark: Remove unused save_chart; load multiple results
This commit is contained in:
@@ -66,7 +66,7 @@ class BenchmarkRunner:
|
|||||||
self.results.to_csv(filename)
|
self.results.to_csv(filename)
|
||||||
|
|
||||||
def load_results(self, filename):
|
def load_results(self, filename):
|
||||||
self.results = pd.read_csv(filename, index_col=0)
|
self.results = pd.concat([self.results, pd.read_csv(filename, index_col=0)])
|
||||||
|
|
||||||
def load_state(self, filename):
|
def load_state(self, filename):
|
||||||
for (solver_name, solver) in self.solvers.items():
|
for (solver_name, solver) in self.solvers.items():
|
||||||
@@ -113,91 +113,6 @@ class BenchmarkRunner:
|
|||||||
self.results["Relative Gap"] = self.results["Gap"] / best_gap
|
self.results["Relative Gap"] = self.results["Gap"] / best_gap
|
||||||
self.results["Relative Nodes"] = self.results["Nodes"] / best_nodes
|
self.results["Relative Nodes"] = self.results["Nodes"] / best_nodes
|
||||||
|
|
||||||
def save_chart(self, filename):
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import seaborn as sns
|
|
||||||
from numpy import median
|
|
||||||
|
|
||||||
sns.set_style("whitegrid")
|
|
||||||
sns.set_palette("Blues_r")
|
|
||||||
results = self.raw_results()
|
|
||||||
results["Gap (%)"] = results["Gap"] * 100.0
|
|
||||||
|
|
||||||
sense = results.loc[0, "Sense"]
|
|
||||||
if sense == "min":
|
|
||||||
primal_column = "Relative upper bound"
|
|
||||||
obj_column = "Upper bound"
|
|
||||||
predicted_obj_column = "Predicted UB"
|
|
||||||
else:
|
|
||||||
primal_column = "Relative lower bound"
|
|
||||||
obj_column = "Lower bound"
|
|
||||||
predicted_obj_column = "Predicted LB"
|
|
||||||
|
|
||||||
fig, (ax1, ax2, ax3, ax4) = plt.subplots(
|
|
||||||
nrows=1,
|
|
||||||
ncols=4,
|
|
||||||
figsize=(12, 4),
|
|
||||||
gridspec_kw={"width_ratios": [2, 1, 1, 2]},
|
|
||||||
)
|
|
||||||
|
|
||||||
# Figure 1: Solver x Wallclock time
|
|
||||||
sns.stripplot(
|
|
||||||
x="Solver",
|
|
||||||
y="Wallclock time",
|
|
||||||
data=results,
|
|
||||||
ax=ax1,
|
|
||||||
jitter=0.25,
|
|
||||||
size=4.0,
|
|
||||||
)
|
|
||||||
sns.barplot(
|
|
||||||
x="Solver",
|
|
||||||
y="Wallclock time",
|
|
||||||
data=results,
|
|
||||||
ax=ax1,
|
|
||||||
errwidth=0.0,
|
|
||||||
alpha=0.4,
|
|
||||||
estimator=median,
|
|
||||||
)
|
|
||||||
ax1.set(ylabel="Wallclock time (s)")
|
|
||||||
|
|
||||||
# Figure 2: Solver x Gap (%)
|
|
||||||
ax2.set_ylim(-0.5, 5.5)
|
|
||||||
sns.stripplot(
|
|
||||||
x="Solver",
|
|
||||||
y="Gap (%)",
|
|
||||||
jitter=0.25,
|
|
||||||
data=results[results["Mode"] != "heuristic"],
|
|
||||||
ax=ax2,
|
|
||||||
size=4.0,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Figure 3: Solver x Primal Value
|
|
||||||
ax3.set_ylim(0.95, 1.05)
|
|
||||||
sns.stripplot(
|
|
||||||
x="Solver",
|
|
||||||
y=primal_column,
|
|
||||||
jitter=0.25,
|
|
||||||
data=results[results["Mode"] == "heuristic"],
|
|
||||||
ax=ax3,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Figure 4: Predicted vs Actual Objective Value
|
|
||||||
sns.scatterplot(
|
|
||||||
x=obj_column,
|
|
||||||
y=predicted_obj_column,
|
|
||||||
hue="Solver",
|
|
||||||
data=results[results["Mode"] != "heuristic"],
|
|
||||||
ax=ax4,
|
|
||||||
)
|
|
||||||
xlim, ylim = ax4.get_xlim(), ax4.get_ylim()
|
|
||||||
ax4.plot([-1e10, 1e10], [-1e10, 1e10], ls="-", color="#cccccc")
|
|
||||||
ax4.set_xlim(xlim)
|
|
||||||
ax4.set_ylim(ylim)
|
|
||||||
ax4.get_legend().remove()
|
|
||||||
|
|
||||||
fig.tight_layout()
|
|
||||||
plt.savefig(filename, bbox_inches="tight", dpi=150)
|
|
||||||
|
|
||||||
def _silence_miplearn_logger(self):
|
def _silence_miplearn_logger(self):
|
||||||
miplearn_logger = logging.getLogger("miplearn")
|
miplearn_logger = logging.getLogger("miplearn")
|
||||||
self.prev_log_level = miplearn_logger.getEffectiveLevel()
|
self.prev_log_level = miplearn_logger.getEffectiveLevel()
|
||||||
|
|||||||
Reference in New Issue
Block a user