mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Small fixes to Alvarez2017 features
This commit is contained in:
@@ -58,6 +58,28 @@ class Variable:
|
||||
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
|
||||
alvarez_2017: Optional[List[float]] = None
|
||||
|
||||
def to_list(self) -> List[float]:
|
||||
features: List[float] = []
|
||||
for attr in [
|
||||
"lower_bound",
|
||||
"obj_coeff",
|
||||
"reduced_cost",
|
||||
"sa_lb_down",
|
||||
"sa_lb_up",
|
||||
"sa_obj_down",
|
||||
"sa_obj_up",
|
||||
"sa_ub_down",
|
||||
"sa_ub_up",
|
||||
"upper_bound",
|
||||
"value",
|
||||
]:
|
||||
if getattr(self, attr) is not None:
|
||||
features.append(getattr(self, attr))
|
||||
for attr in ["user_features", "alvarez_2017"]:
|
||||
if getattr(self, attr) is not None:
|
||||
features.extend(getattr(self, attr))
|
||||
return features
|
||||
|
||||
|
||||
@dataclass
|
||||
class Constraint:
|
||||
@@ -88,16 +110,23 @@ class FeaturesExtractor:
|
||||
) -> None:
|
||||
self.solver = internal_solver
|
||||
|
||||
def extract(self, instance: "Instance") -> None:
|
||||
instance.features.variables = self.solver.get_variables()
|
||||
instance.features.constraints = self.solver.get_constraints()
|
||||
self._extract_user_features_vars(instance)
|
||||
self._extract_user_features_constrs(instance)
|
||||
self._extract_user_features_instance(instance)
|
||||
self._extract_alvarez_2017(instance)
|
||||
def extract(self, instance: "Instance") -> Features:
|
||||
features = Features()
|
||||
features.variables = self.solver.get_variables()
|
||||
features.constraints = self.solver.get_constraints()
|
||||
self._extract_user_features_vars(instance, features)
|
||||
self._extract_user_features_constrs(instance, features)
|
||||
self._extract_user_features_instance(instance, features)
|
||||
self._extract_alvarez_2017(features)
|
||||
return features
|
||||
|
||||
def _extract_user_features_vars(self, instance: "Instance"):
|
||||
for (var_name, var) in instance.features.variables.items():
|
||||
def _extract_user_features_vars(
|
||||
self,
|
||||
instance: "Instance",
|
||||
features: Features,
|
||||
) -> None:
|
||||
assert features.variables is not None
|
||||
for (var_name, var) in features.variables.items():
|
||||
user_features: Optional[List[float]] = None
|
||||
category: Category = instance.get_variable_category(var_name)
|
||||
if category is not None:
|
||||
@@ -122,9 +151,14 @@ class FeaturesExtractor:
|
||||
var.category = category
|
||||
var.user_features = user_features
|
||||
|
||||
def _extract_user_features_constrs(self, instance: "Instance"):
|
||||
def _extract_user_features_constrs(
|
||||
self,
|
||||
instance: "Instance",
|
||||
features: Features,
|
||||
) -> None:
|
||||
assert features.constraints is not None
|
||||
has_static_lazy = instance.has_static_lazy_constraints()
|
||||
for (cid, constr) in instance.features.constraints.items():
|
||||
for (cid, constr) in features.constraints.items():
|
||||
user_features = None
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is not None:
|
||||
@@ -148,8 +182,12 @@ class FeaturesExtractor:
|
||||
constr.category = category
|
||||
constr.user_features = user_features
|
||||
|
||||
def _extract_user_features_instance(self, instance: "Instance"):
|
||||
assert instance.features.constraints is not None
|
||||
def _extract_user_features_instance(
|
||||
self,
|
||||
instance: "Instance",
|
||||
features: Features,
|
||||
) -> None:
|
||||
assert features.constraints is not None
|
||||
user_features = instance.get_instance_features()
|
||||
if isinstance(user_features, np.ndarray):
|
||||
user_features = user_features.tolist()
|
||||
@@ -163,49 +201,48 @@ class FeaturesExtractor:
|
||||
f"Found {type(v).__name__} instead."
|
||||
)
|
||||
lazy_count = 0
|
||||
for (cid, cdict) in instance.features.constraints.items():
|
||||
for (cid, cdict) in features.constraints.items():
|
||||
if cdict.lazy:
|
||||
lazy_count += 1
|
||||
instance.features.instance = InstanceFeatures(
|
||||
features.instance = InstanceFeatures(
|
||||
user_features=user_features,
|
||||
lazy_constraint_count=lazy_count,
|
||||
)
|
||||
|
||||
def _extract_alvarez_2017(self, instance: "Instance"):
|
||||
assert instance.features is not None
|
||||
assert instance.features.variables is not None
|
||||
def _extract_alvarez_2017(self, features: Features) -> None:
|
||||
assert features.variables is not None
|
||||
|
||||
pos_obj_coeff_sum = 0.0
|
||||
neg_obj_coeff_sum = 0.0
|
||||
for (varname, var) in instance.features.variables.items():
|
||||
for (varname, var) in features.variables.items():
|
||||
if var.obj_coeff is not None:
|
||||
if var.obj_coeff > 0:
|
||||
pos_obj_coeff_sum += var.obj_coeff
|
||||
if var.obj_coeff < 0:
|
||||
neg_obj_coeff_sum += -var.obj_coeff
|
||||
|
||||
for (varname, var) in instance.features.variables.items():
|
||||
for (varname, var) in features.variables.items():
|
||||
assert isinstance(var, Variable)
|
||||
features = []
|
||||
f: List[float] = []
|
||||
if var.obj_coeff is not None:
|
||||
# Feature 1
|
||||
features.append(np.sign(var.obj_coeff))
|
||||
f.append(np.sign(var.obj_coeff))
|
||||
|
||||
# Feature 2
|
||||
if pos_obj_coeff_sum > 0:
|
||||
features.append(abs(var.obj_coeff) / pos_obj_coeff_sum)
|
||||
f.append(abs(var.obj_coeff) / pos_obj_coeff_sum)
|
||||
else:
|
||||
features.append(0.0)
|
||||
f.append(0.0)
|
||||
|
||||
# Feature 3
|
||||
if neg_obj_coeff_sum > 0:
|
||||
features.append(abs(var.obj_coeff) / neg_obj_coeff_sum)
|
||||
f.append(abs(var.obj_coeff) / neg_obj_coeff_sum)
|
||||
else:
|
||||
features.append(0.0)
|
||||
f.append(0.0)
|
||||
|
||||
if var.value is not None:
|
||||
# Feature 37
|
||||
features.append(
|
||||
f.append(
|
||||
min(
|
||||
var.value - np.floor(var.value),
|
||||
np.ceil(var.value) - var.value,
|
||||
@@ -213,25 +250,29 @@ class FeaturesExtractor:
|
||||
)
|
||||
|
||||
if var.sa_obj_up is not None:
|
||||
assert var.obj_coeff is not None
|
||||
assert var.sa_obj_down is not None
|
||||
csign = np.sign(var.obj_coeff)
|
||||
# Convert inf into large finite numbers
|
||||
sa_obj_down = max(-1e20, var.sa_obj_down)
|
||||
sa_obj_up = min(1e20, var.sa_obj_up)
|
||||
|
||||
# Features 44 and 46
|
||||
features.append(np.sign(var.sa_obj_up))
|
||||
features.append(np.sign(var.sa_obj_down))
|
||||
f.append(np.sign(var.sa_obj_up))
|
||||
f.append(np.sign(var.sa_obj_down))
|
||||
|
||||
# Feature 47
|
||||
f47 = log((var.obj_coeff - var.sa_obj_down) / csign)
|
||||
if isfinite(f47):
|
||||
features.append(f47)
|
||||
csign = np.sign(var.obj_coeff)
|
||||
if csign != 0 and ((var.obj_coeff - sa_obj_down) / csign) > 0.001:
|
||||
f.append(log((var.obj_coeff - sa_obj_down) / csign))
|
||||
else:
|
||||
features.append(0.0)
|
||||
f.append(0.0)
|
||||
|
||||
# Feature 48
|
||||
f48 = log((var.sa_obj_up - var.obj_coeff) / csign)
|
||||
if isfinite(f48):
|
||||
features.append(f48)
|
||||
if csign != 0 and ((sa_obj_up - var.obj_coeff) / csign) > 0.001:
|
||||
f.append(log((sa_obj_up - var.obj_coeff) / csign))
|
||||
else:
|
||||
features.append(0.0)
|
||||
f.append(0.0)
|
||||
|
||||
var.alvarez_2017 = features
|
||||
for v in f:
|
||||
assert isfinite(v), f"non-finite elements detected: {f}"
|
||||
var.alvarez_2017 = f
|
||||
|
||||
Reference in New Issue
Block a user