|
|
|
@ -5,6 +5,7 @@
|
|
|
|
|
import collections
|
|
|
|
|
import numbers
|
|
|
|
|
from dataclasses import dataclass
|
|
|
|
|
from math import log, isfinite
|
|
|
|
|
from typing import TYPE_CHECKING, Dict, Optional, Set, List, Hashable
|
|
|
|
|
|
|
|
|
|
from miplearn.types import Solution, VariableName, Category
|
|
|
|
@ -53,6 +54,10 @@ class Variable:
|
|
|
|
|
user_features: Optional[List[float]] = None
|
|
|
|
|
value: Optional[float] = None
|
|
|
|
|
|
|
|
|
|
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
|
|
|
|
|
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
|
|
|
|
|
alvarez_2017: Optional[List[float]] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
|
class Constraint:
|
|
|
|
@ -89,6 +94,7 @@ class FeaturesExtractor:
|
|
|
|
|
self._extract_user_features_vars(instance)
|
|
|
|
|
self._extract_user_features_constrs(instance)
|
|
|
|
|
self._extract_user_features_instance(instance)
|
|
|
|
|
self._extract_alvarez_2017(instance)
|
|
|
|
|
|
|
|
|
|
def _extract_user_features_vars(self, instance: "Instance"):
|
|
|
|
|
for (var_name, var) in instance.features.variables.items():
|
|
|
|
@ -164,3 +170,68 @@ class FeaturesExtractor:
|
|
|
|
|
user_features=user_features,
|
|
|
|
|
lazy_constraint_count=lazy_count,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def _extract_alvarez_2017(self, instance: "Instance"):
|
|
|
|
|
assert instance.features is not None
|
|
|
|
|
assert instance.features.variables is not None
|
|
|
|
|
|
|
|
|
|
pos_obj_coeff_sum = 0.0
|
|
|
|
|
neg_obj_coeff_sum = 0.0
|
|
|
|
|
for (varname, var) in instance.features.variables.items():
|
|
|
|
|
if var.obj_coeff is not None:
|
|
|
|
|
if var.obj_coeff > 0:
|
|
|
|
|
pos_obj_coeff_sum += var.obj_coeff
|
|
|
|
|
if var.obj_coeff < 0:
|
|
|
|
|
neg_obj_coeff_sum += -var.obj_coeff
|
|
|
|
|
|
|
|
|
|
for (varname, var) in instance.features.variables.items():
|
|
|
|
|
assert isinstance(var, Variable)
|
|
|
|
|
features = []
|
|
|
|
|
if var.obj_coeff is not None:
|
|
|
|
|
# Feature 1
|
|
|
|
|
features.append(np.sign(var.obj_coeff))
|
|
|
|
|
|
|
|
|
|
# Feature 2
|
|
|
|
|
if pos_obj_coeff_sum > 0:
|
|
|
|
|
features.append(abs(var.obj_coeff) / pos_obj_coeff_sum)
|
|
|
|
|
else:
|
|
|
|
|
features.append(0.0)
|
|
|
|
|
|
|
|
|
|
# Feature 3
|
|
|
|
|
if neg_obj_coeff_sum > 0:
|
|
|
|
|
features.append(abs(var.obj_coeff) / neg_obj_coeff_sum)
|
|
|
|
|
else:
|
|
|
|
|
features.append(0.0)
|
|
|
|
|
|
|
|
|
|
if var.value is not None:
|
|
|
|
|
# Feature 37
|
|
|
|
|
features.append(
|
|
|
|
|
min(
|
|
|
|
|
var.value - np.floor(var.value),
|
|
|
|
|
np.ceil(var.value) - var.value,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if var.sa_obj_up is not None:
|
|
|
|
|
assert var.sa_obj_down is not None
|
|
|
|
|
csign = np.sign(var.obj_coeff)
|
|
|
|
|
|
|
|
|
|
# Features 44 and 46
|
|
|
|
|
features.append(np.sign(var.sa_obj_up))
|
|
|
|
|
features.append(np.sign(var.sa_obj_down))
|
|
|
|
|
|
|
|
|
|
# Feature 47
|
|
|
|
|
f47 = log((var.obj_coeff - var.sa_obj_down) / csign)
|
|
|
|
|
if isfinite(f47):
|
|
|
|
|
features.append(f47)
|
|
|
|
|
else:
|
|
|
|
|
features.append(0.0)
|
|
|
|
|
|
|
|
|
|
# Feature 48
|
|
|
|
|
f48 = log((var.sa_obj_up - var.obj_coeff) / csign)
|
|
|
|
|
if isfinite(f48):
|
|
|
|
|
features.append(f48)
|
|
|
|
|
else:
|
|
|
|
|
features.append(0.0)
|
|
|
|
|
|
|
|
|
|
var.alvarez_2017 = features
|
|
|
|
|