mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Small fixes to Alvarez2017 features
This commit is contained in:
@@ -58,6 +58,28 @@ class Variable:
|
|||||||
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
|
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
|
||||||
alvarez_2017: Optional[List[float]] = None
|
alvarez_2017: Optional[List[float]] = None
|
||||||
|
|
||||||
|
def to_list(self) -> List[float]:
|
||||||
|
features: List[float] = []
|
||||||
|
for attr in [
|
||||||
|
"lower_bound",
|
||||||
|
"obj_coeff",
|
||||||
|
"reduced_cost",
|
||||||
|
"sa_lb_down",
|
||||||
|
"sa_lb_up",
|
||||||
|
"sa_obj_down",
|
||||||
|
"sa_obj_up",
|
||||||
|
"sa_ub_down",
|
||||||
|
"sa_ub_up",
|
||||||
|
"upper_bound",
|
||||||
|
"value",
|
||||||
|
]:
|
||||||
|
if getattr(self, attr) is not None:
|
||||||
|
features.append(getattr(self, attr))
|
||||||
|
for attr in ["user_features", "alvarez_2017"]:
|
||||||
|
if getattr(self, attr) is not None:
|
||||||
|
features.extend(getattr(self, attr))
|
||||||
|
return features
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class Constraint:
|
class Constraint:
|
||||||
@@ -88,16 +110,23 @@ class FeaturesExtractor:
|
|||||||
) -> None:
|
) -> None:
|
||||||
self.solver = internal_solver
|
self.solver = internal_solver
|
||||||
|
|
||||||
def extract(self, instance: "Instance") -> None:
|
def extract(self, instance: "Instance") -> Features:
|
||||||
instance.features.variables = self.solver.get_variables()
|
features = Features()
|
||||||
instance.features.constraints = self.solver.get_constraints()
|
features.variables = self.solver.get_variables()
|
||||||
self._extract_user_features_vars(instance)
|
features.constraints = self.solver.get_constraints()
|
||||||
self._extract_user_features_constrs(instance)
|
self._extract_user_features_vars(instance, features)
|
||||||
self._extract_user_features_instance(instance)
|
self._extract_user_features_constrs(instance, features)
|
||||||
self._extract_alvarez_2017(instance)
|
self._extract_user_features_instance(instance, features)
|
||||||
|
self._extract_alvarez_2017(features)
|
||||||
|
return features
|
||||||
|
|
||||||
def _extract_user_features_vars(self, instance: "Instance"):
|
def _extract_user_features_vars(
|
||||||
for (var_name, var) in instance.features.variables.items():
|
self,
|
||||||
|
instance: "Instance",
|
||||||
|
features: Features,
|
||||||
|
) -> None:
|
||||||
|
assert features.variables is not None
|
||||||
|
for (var_name, var) in features.variables.items():
|
||||||
user_features: Optional[List[float]] = None
|
user_features: Optional[List[float]] = None
|
||||||
category: Category = instance.get_variable_category(var_name)
|
category: Category = instance.get_variable_category(var_name)
|
||||||
if category is not None:
|
if category is not None:
|
||||||
@@ -122,9 +151,14 @@ class FeaturesExtractor:
|
|||||||
var.category = category
|
var.category = category
|
||||||
var.user_features = user_features
|
var.user_features = user_features
|
||||||
|
|
||||||
def _extract_user_features_constrs(self, instance: "Instance"):
|
def _extract_user_features_constrs(
|
||||||
|
self,
|
||||||
|
instance: "Instance",
|
||||||
|
features: Features,
|
||||||
|
) -> None:
|
||||||
|
assert features.constraints is not None
|
||||||
has_static_lazy = instance.has_static_lazy_constraints()
|
has_static_lazy = instance.has_static_lazy_constraints()
|
||||||
for (cid, constr) in instance.features.constraints.items():
|
for (cid, constr) in features.constraints.items():
|
||||||
user_features = None
|
user_features = None
|
||||||
category = instance.get_constraint_category(cid)
|
category = instance.get_constraint_category(cid)
|
||||||
if category is not None:
|
if category is not None:
|
||||||
@@ -148,8 +182,12 @@ class FeaturesExtractor:
|
|||||||
constr.category = category
|
constr.category = category
|
||||||
constr.user_features = user_features
|
constr.user_features = user_features
|
||||||
|
|
||||||
def _extract_user_features_instance(self, instance: "Instance"):
|
def _extract_user_features_instance(
|
||||||
assert instance.features.constraints is not None
|
self,
|
||||||
|
instance: "Instance",
|
||||||
|
features: Features,
|
||||||
|
) -> None:
|
||||||
|
assert features.constraints is not None
|
||||||
user_features = instance.get_instance_features()
|
user_features = instance.get_instance_features()
|
||||||
if isinstance(user_features, np.ndarray):
|
if isinstance(user_features, np.ndarray):
|
||||||
user_features = user_features.tolist()
|
user_features = user_features.tolist()
|
||||||
@@ -163,49 +201,48 @@ class FeaturesExtractor:
|
|||||||
f"Found {type(v).__name__} instead."
|
f"Found {type(v).__name__} instead."
|
||||||
)
|
)
|
||||||
lazy_count = 0
|
lazy_count = 0
|
||||||
for (cid, cdict) in instance.features.constraints.items():
|
for (cid, cdict) in features.constraints.items():
|
||||||
if cdict.lazy:
|
if cdict.lazy:
|
||||||
lazy_count += 1
|
lazy_count += 1
|
||||||
instance.features.instance = InstanceFeatures(
|
features.instance = InstanceFeatures(
|
||||||
user_features=user_features,
|
user_features=user_features,
|
||||||
lazy_constraint_count=lazy_count,
|
lazy_constraint_count=lazy_count,
|
||||||
)
|
)
|
||||||
|
|
||||||
def _extract_alvarez_2017(self, instance: "Instance"):
|
def _extract_alvarez_2017(self, features: Features) -> None:
|
||||||
assert instance.features is not None
|
assert features.variables is not None
|
||||||
assert instance.features.variables is not None
|
|
||||||
|
|
||||||
pos_obj_coeff_sum = 0.0
|
pos_obj_coeff_sum = 0.0
|
||||||
neg_obj_coeff_sum = 0.0
|
neg_obj_coeff_sum = 0.0
|
||||||
for (varname, var) in instance.features.variables.items():
|
for (varname, var) in features.variables.items():
|
||||||
if var.obj_coeff is not None:
|
if var.obj_coeff is not None:
|
||||||
if var.obj_coeff > 0:
|
if var.obj_coeff > 0:
|
||||||
pos_obj_coeff_sum += var.obj_coeff
|
pos_obj_coeff_sum += var.obj_coeff
|
||||||
if var.obj_coeff < 0:
|
if var.obj_coeff < 0:
|
||||||
neg_obj_coeff_sum += -var.obj_coeff
|
neg_obj_coeff_sum += -var.obj_coeff
|
||||||
|
|
||||||
for (varname, var) in instance.features.variables.items():
|
for (varname, var) in features.variables.items():
|
||||||
assert isinstance(var, Variable)
|
assert isinstance(var, Variable)
|
||||||
features = []
|
f: List[float] = []
|
||||||
if var.obj_coeff is not None:
|
if var.obj_coeff is not None:
|
||||||
# Feature 1
|
# Feature 1
|
||||||
features.append(np.sign(var.obj_coeff))
|
f.append(np.sign(var.obj_coeff))
|
||||||
|
|
||||||
# Feature 2
|
# Feature 2
|
||||||
if pos_obj_coeff_sum > 0:
|
if pos_obj_coeff_sum > 0:
|
||||||
features.append(abs(var.obj_coeff) / pos_obj_coeff_sum)
|
f.append(abs(var.obj_coeff) / pos_obj_coeff_sum)
|
||||||
else:
|
else:
|
||||||
features.append(0.0)
|
f.append(0.0)
|
||||||
|
|
||||||
# Feature 3
|
# Feature 3
|
||||||
if neg_obj_coeff_sum > 0:
|
if neg_obj_coeff_sum > 0:
|
||||||
features.append(abs(var.obj_coeff) / neg_obj_coeff_sum)
|
f.append(abs(var.obj_coeff) / neg_obj_coeff_sum)
|
||||||
else:
|
else:
|
||||||
features.append(0.0)
|
f.append(0.0)
|
||||||
|
|
||||||
if var.value is not None:
|
if var.value is not None:
|
||||||
# Feature 37
|
# Feature 37
|
||||||
features.append(
|
f.append(
|
||||||
min(
|
min(
|
||||||
var.value - np.floor(var.value),
|
var.value - np.floor(var.value),
|
||||||
np.ceil(var.value) - var.value,
|
np.ceil(var.value) - var.value,
|
||||||
@@ -213,25 +250,29 @@ class FeaturesExtractor:
|
|||||||
)
|
)
|
||||||
|
|
||||||
if var.sa_obj_up is not None:
|
if var.sa_obj_up is not None:
|
||||||
|
assert var.obj_coeff is not None
|
||||||
assert var.sa_obj_down is not None
|
assert var.sa_obj_down is not None
|
||||||
csign = np.sign(var.obj_coeff)
|
# Convert inf into large finite numbers
|
||||||
|
sa_obj_down = max(-1e20, var.sa_obj_down)
|
||||||
|
sa_obj_up = min(1e20, var.sa_obj_up)
|
||||||
|
|
||||||
# Features 44 and 46
|
# Features 44 and 46
|
||||||
features.append(np.sign(var.sa_obj_up))
|
f.append(np.sign(var.sa_obj_up))
|
||||||
features.append(np.sign(var.sa_obj_down))
|
f.append(np.sign(var.sa_obj_down))
|
||||||
|
|
||||||
# Feature 47
|
# Feature 47
|
||||||
f47 = log((var.obj_coeff - var.sa_obj_down) / csign)
|
csign = np.sign(var.obj_coeff)
|
||||||
if isfinite(f47):
|
if csign != 0 and ((var.obj_coeff - sa_obj_down) / csign) > 0.001:
|
||||||
features.append(f47)
|
f.append(log((var.obj_coeff - sa_obj_down) / csign))
|
||||||
else:
|
else:
|
||||||
features.append(0.0)
|
f.append(0.0)
|
||||||
|
|
||||||
# Feature 48
|
# Feature 48
|
||||||
f48 = log((var.sa_obj_up - var.obj_coeff) / csign)
|
if csign != 0 and ((sa_obj_up - var.obj_coeff) / csign) > 0.001:
|
||||||
if isfinite(f48):
|
f.append(log((sa_obj_up - var.obj_coeff) / csign))
|
||||||
features.append(f48)
|
|
||||||
else:
|
else:
|
||||||
features.append(0.0)
|
f.append(0.0)
|
||||||
|
|
||||||
var.alvarez_2017 = features
|
for v in f:
|
||||||
|
assert isfinite(v), f"non-finite elements detected: {f}"
|
||||||
|
var.alvarez_2017 = f
|
||||||
|
|||||||
@@ -21,9 +21,13 @@ def test_knapsack() -> None:
|
|||||||
solver.set_instance(instance, model)
|
solver.set_instance(instance, model)
|
||||||
solver.solve_lp()
|
solver.solve_lp()
|
||||||
|
|
||||||
FeaturesExtractor(solver).extract(instance)
|
features = FeaturesExtractor(solver).extract(instance)
|
||||||
|
assert features.variables is not None
|
||||||
|
assert features.constraints is not None
|
||||||
|
assert features.instance is not None
|
||||||
|
|
||||||
assert_equals(
|
assert_equals(
|
||||||
_round_variables(instance.features.variables),
|
_round_variables(features.variables),
|
||||||
{
|
{
|
||||||
"x[0]": Variable(
|
"x[0]": Variable(
|
||||||
basis_status="U",
|
basis_status="U",
|
||||||
@@ -41,7 +45,7 @@ def test_knapsack() -> None:
|
|||||||
upper_bound=1.0,
|
upper_bound=1.0,
|
||||||
user_features=[23.0, 505.0],
|
user_features=[23.0, 505.0],
|
||||||
value=1.0,
|
value=1.0,
|
||||||
alvarez_2017=[1.0, 0.32899, 0.0, 0.0, 1.0, 1.0, 5.265874, 0.0],
|
alvarez_2017=[1.0, 0.32899, 0.0, 0.0, 1.0, 1.0, 5.265874, 46.051702],
|
||||||
),
|
),
|
||||||
"x[1]": Variable(
|
"x[1]": Variable(
|
||||||
basis_status="B",
|
basis_status="B",
|
||||||
@@ -86,16 +90,7 @@ def test_knapsack() -> None:
|
|||||||
upper_bound=1.0,
|
upper_bound=1.0,
|
||||||
user_features=[20.0, 458.0],
|
user_features=[20.0, 458.0],
|
||||||
value=1.0,
|
value=1.0,
|
||||||
alvarez_2017=[
|
alvarez_2017=[1.0, 0.298371, 0.0, 0.0, 1.0, 1.0, 5.232342, 46.051702],
|
||||||
1.0,
|
|
||||||
0.298371,
|
|
||||||
0.0,
|
|
||||||
0.0,
|
|
||||||
1.0,
|
|
||||||
1.0,
|
|
||||||
5.232342,
|
|
||||||
0.0,
|
|
||||||
],
|
|
||||||
),
|
),
|
||||||
"x[3]": Variable(
|
"x[3]": Variable(
|
||||||
basis_status="L",
|
basis_status="L",
|
||||||
@@ -113,21 +108,12 @@ def test_knapsack() -> None:
|
|||||||
upper_bound=1.0,
|
upper_bound=1.0,
|
||||||
user_features=[18.0, 220.0],
|
user_features=[18.0, 220.0],
|
||||||
value=0.0,
|
value=0.0,
|
||||||
alvarez_2017=[
|
alvarez_2017=[1.0, 0.143322, 0.0, 0.0, 1.0, -1.0, 46.051702, 3.16515],
|
||||||
1.0,
|
|
||||||
0.143322,
|
|
||||||
0.0,
|
|
||||||
0.0,
|
|
||||||
1.0,
|
|
||||||
-1.0,
|
|
||||||
0.0,
|
|
||||||
3.16515,
|
|
||||||
],
|
|
||||||
),
|
),
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
assert_equals(
|
assert_equals(
|
||||||
_round_constraints(instance.features.constraints),
|
_round_constraints(features.constraints),
|
||||||
{
|
{
|
||||||
"eq_capacity": Constraint(
|
"eq_capacity": Constraint(
|
||||||
basis_status="N",
|
basis_status="N",
|
||||||
@@ -145,7 +131,7 @@ def test_knapsack() -> None:
|
|||||||
},
|
},
|
||||||
)
|
)
|
||||||
assert_equals(
|
assert_equals(
|
||||||
instance.features.instance,
|
features.instance,
|
||||||
InstanceFeatures(
|
InstanceFeatures(
|
||||||
user_features=[67.0, 21.75],
|
user_features=[67.0, 21.75],
|
||||||
lazy_constraint_count=0,
|
lazy_constraint_count=0,
|
||||||
|
|||||||
Reference in New Issue
Block a user