Implement LogisticWarmStartPredicitor with tests

pull/1/head
Alinson S. Xavier 6 years ago
parent e13eba86b0
commit eb9a677136

@ -2,9 +2,8 @@
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
# from .warmstart import WarmStartPredictor
from .transformers import PerVariableTransformer
from .warmstart import WarmStartPredictor
from .warmstart import LogisticWarmStartPredictor
import pyomo.environ as pe
import numpy as np
@ -17,9 +16,11 @@ class LearningSolver:
def __init__(self,
threads=4,
parent_solver=pe.SolverFactory('cbc')):
parent_solver=pe.SolverFactory('cbc'),
ws_predictor_factory=LogisticWarmStartPredictor):
self.parent_solver = parent_solver
self.parent_solver.options["threads"] = threads
self.ws_predictor_factory = ws_predictor_factory
self.x_train = {}
self.y_train = {}
self.ws_predictors = {}
@ -75,7 +76,7 @@ class LearningSolver:
for category in x_train_dict.keys():
x_train = x_train_dict[category]
y_train = y_train_dict[category]
self.ws_predictors[category] = WarmStartPredictor()
self.ws_predictors[category] = self.ws_predictor_factory()
self.ws_predictors[category].fit(x_train, y_train)
def _solve(self, model, tee=False):

@ -0,0 +1,64 @@
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn.warmstart import LogisticWarmStartPredictor
from sklearn.metrics import accuracy_score, precision_score
import numpy as np
def _generate_dataset(ground_truth, n_samples=10_000):
x_train = np.random.rand(n_samples,5)
x_test = np.random.rand(n_samples,5)
y_train = ground_truth(x_train)
y_test = ground_truth(x_test)
return x_train, y_train, x_test, y_test
def _is_sum_greater_than_two(x):
y = (np.sum(x, axis=1) > 2.0).astype(int)
return np.vstack([y, 1 - y]).transpose()
def _always_zero(x):
y = np.zeros((1, x.shape[0]))
return np.vstack([y, 1 - y]).transpose()
def _random_values(x):
y = np.random.randint(2, size=x.shape[0])
return np.vstack([y, 1 - y]).transpose()
def test_logistic_ws_with_balanced_labels():
x_train, y_train, x_test, y_test = _generate_dataset(_is_sum_greater_than_two)
ws = LogisticWarmStartPredictor()
ws.fit(x_train, y_train)
y_pred = ws.predict(x_test)
assert accuracy_score(y_test[:,0], y_pred[:,0]) > 0.99
assert accuracy_score(y_test[:,1], y_pred[:,1]) > 0.99
def test_logistic_ws_with_unbalanced_labels():
x_train, y_train, x_test, y_test = _generate_dataset(_always_zero)
ws = LogisticWarmStartPredictor()
ws.fit(x_train, y_train)
y_pred = ws.predict(x_test)
assert accuracy_score(y_test[:,0], y_pred[:,0]) == 1.0
assert accuracy_score(y_test[:,1], y_pred[:,1]) == 1.0
def test_logistic_ws_with_unpredictable_labels():
x_train, y_train, x_test, y_test = _generate_dataset(_random_values)
ws = LogisticWarmStartPredictor()
ws.fit(x_train, y_train)
y_pred = ws.predict(x_test)
assert np.sum(y_pred) == 0
def test_logistic_ws_with_small_sample_size():
x_train, y_train, x_test, y_test = _generate_dataset(_random_values, n_samples=3)
ws = LogisticWarmStartPredictor()
ws.fit(x_train, y_train)
y_pred = ws.predict(x_test)
assert np.sum(y_pred) == 0

@ -2,42 +2,73 @@
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from abc import ABC, abstractmethod
import numpy as np
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_score
class WarmStartPredictor:
def __init__(self,
thr_fix_zero=0.05,
thr_fix_one=0.95,
thr_predict=0.95):
self.model = None
self.thr_predict = thr_predict
self.thr_fix_zero = thr_fix_zero
self.thr_fix_one = thr_fix_one
class WarmStartPredictor(ABC):
def __init__(self):
self.models = [None, None]
def fit(self, x_train, y_train):
assert isinstance(x_train, np.ndarray)
assert isinstance(y_train, np.ndarray)
assert y_train.shape[1] == 2
assert y_train.shape[0] == x_train.shape[0]
y_hat = np.average(y_train[:, 1])
if y_hat < self.thr_fix_zero or y_hat > self.thr_fix_one:
self.model = int(y_hat)
else:
self.model = make_pipeline(StandardScaler(), LogisticRegression())
self.model.fit(x_train, y_train[:, 1].astype(int))
assert y_train.shape[1] == 2
for i in [0,1]:
self.models[i] = self._fit(x_train, y_train[:, i], i)
def predict(self, x_test):
assert isinstance(x_test, np.ndarray)
if isinstance(self.model, int):
p_test = np.array([[1 - self.model, self.model]
for _ in range(x_test.shape[0])])
else:
p_test = self.model.predict_proba(x_test)
p_test[p_test < self.thr_predict] = 0
p_test[p_test > 0] = 1
p_test = p_test.astype(int)
return p_test
y_pred = np.zeros((x_test.shape[0], 2), dtype=np.int)
for i in [0,1]:
if isinstance(self.models[i], int):
y_pred[:, i] = self.models[i]
else:
y_pred[:, i] = self.models[i].predict(x_test)
return y_pred
@abstractmethod
def _fit(self, x_train, y_train, label):
pass
class LogisticWarmStartPredictor(WarmStartPredictor):
def __init__(self,
min_samples=100,
thr_fix=[0.99, 0.99],
thr_balance=[0.95, 0.95],
thr_score=[0.95, 0.95]):
super().__init__()
self.min_samples = min_samples
self.thr_fix = thr_fix
self.thr_balance = thr_balance
self.thr_score = thr_score
def _fit(self, x_train, y_train, label):
y_train_avg = np.average(y_train)
# If number of samples is too small, don't predict anything.
if x_train.shape[0] < self.min_samples:
return 0
# If vast majority of observations are true, always return true.
if y_train_avg > self.thr_fix[label]:
return 1
# If dataset is not balanced enough, don't predict anything.
if y_train_avg < (1 - self.thr_balance[label]) or y_train_avg > self.thr_balance[label]:
return 0
reg = make_pipeline(StandardScaler(), LogisticRegression())
reg_score = np.mean(cross_val_score(reg, x_train, y_train, cv=5))
# If cross-validation score is too low, don't predict anything.
if reg_score < self.thr_score[label]:
return 0
reg.fit(x_train, y_train.astype(int))
return reg
Loading…
Cancel
Save