mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Implement LogisticWarmStartPredicitor with tests
This commit is contained in:
@@ -2,9 +2,8 @@
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
# from .warmstart import WarmStartPredictor
|
||||
from .transformers import PerVariableTransformer
|
||||
from .warmstart import WarmStartPredictor
|
||||
from .warmstart import LogisticWarmStartPredictor
|
||||
import pyomo.environ as pe
|
||||
import numpy as np
|
||||
|
||||
@@ -17,9 +16,11 @@ class LearningSolver:
|
||||
|
||||
def __init__(self,
|
||||
threads=4,
|
||||
parent_solver=pe.SolverFactory('cbc')):
|
||||
parent_solver=pe.SolverFactory('cbc'),
|
||||
ws_predictor_factory=LogisticWarmStartPredictor):
|
||||
self.parent_solver = parent_solver
|
||||
self.parent_solver.options["threads"] = threads
|
||||
self.ws_predictor_factory = ws_predictor_factory
|
||||
self.x_train = {}
|
||||
self.y_train = {}
|
||||
self.ws_predictors = {}
|
||||
@@ -75,7 +76,7 @@ class LearningSolver:
|
||||
for category in x_train_dict.keys():
|
||||
x_train = x_train_dict[category]
|
||||
y_train = y_train_dict[category]
|
||||
self.ws_predictors[category] = WarmStartPredictor()
|
||||
self.ws_predictors[category] = self.ws_predictor_factory()
|
||||
self.ws_predictors[category].fit(x_train, y_train)
|
||||
|
||||
def _solve(self, model, tee=False):
|
||||
|
||||
64
miplearn/tests/test_warmstart_logistic.py
Normal file
64
miplearn/tests/test_warmstart_logistic.py
Normal file
@@ -0,0 +1,64 @@
|
||||
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from miplearn.warmstart import LogisticWarmStartPredictor
|
||||
from sklearn.metrics import accuracy_score, precision_score
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _generate_dataset(ground_truth, n_samples=10_000):
|
||||
x_train = np.random.rand(n_samples,5)
|
||||
x_test = np.random.rand(n_samples,5)
|
||||
y_train = ground_truth(x_train)
|
||||
y_test = ground_truth(x_test)
|
||||
return x_train, y_train, x_test, y_test
|
||||
|
||||
|
||||
def _is_sum_greater_than_two(x):
|
||||
y = (np.sum(x, axis=1) > 2.0).astype(int)
|
||||
return np.vstack([y, 1 - y]).transpose()
|
||||
|
||||
|
||||
def _always_zero(x):
|
||||
y = np.zeros((1, x.shape[0]))
|
||||
return np.vstack([y, 1 - y]).transpose()
|
||||
|
||||
|
||||
def _random_values(x):
|
||||
y = np.random.randint(2, size=x.shape[0])
|
||||
return np.vstack([y, 1 - y]).transpose()
|
||||
|
||||
|
||||
def test_logistic_ws_with_balanced_labels():
|
||||
x_train, y_train, x_test, y_test = _generate_dataset(_is_sum_greater_than_two)
|
||||
ws = LogisticWarmStartPredictor()
|
||||
ws.fit(x_train, y_train)
|
||||
y_pred = ws.predict(x_test)
|
||||
assert accuracy_score(y_test[:,0], y_pred[:,0]) > 0.99
|
||||
assert accuracy_score(y_test[:,1], y_pred[:,1]) > 0.99
|
||||
|
||||
|
||||
def test_logistic_ws_with_unbalanced_labels():
|
||||
x_train, y_train, x_test, y_test = _generate_dataset(_always_zero)
|
||||
ws = LogisticWarmStartPredictor()
|
||||
ws.fit(x_train, y_train)
|
||||
y_pred = ws.predict(x_test)
|
||||
assert accuracy_score(y_test[:,0], y_pred[:,0]) == 1.0
|
||||
assert accuracy_score(y_test[:,1], y_pred[:,1]) == 1.0
|
||||
|
||||
|
||||
def test_logistic_ws_with_unpredictable_labels():
|
||||
x_train, y_train, x_test, y_test = _generate_dataset(_random_values)
|
||||
ws = LogisticWarmStartPredictor()
|
||||
ws.fit(x_train, y_train)
|
||||
y_pred = ws.predict(x_test)
|
||||
assert np.sum(y_pred) == 0
|
||||
|
||||
|
||||
def test_logistic_ws_with_small_sample_size():
|
||||
x_train, y_train, x_test, y_test = _generate_dataset(_random_values, n_samples=3)
|
||||
ws = LogisticWarmStartPredictor()
|
||||
ws.fit(x_train, y_train)
|
||||
y_pred = ws.predict(x_test)
|
||||
assert np.sum(y_pred) == 0
|
||||
@@ -2,42 +2,73 @@
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
import numpy as np
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.model_selection import cross_val_score
|
||||
|
||||
|
||||
class WarmStartPredictor:
|
||||
def __init__(self,
|
||||
thr_fix_zero=0.05,
|
||||
thr_fix_one=0.95,
|
||||
thr_predict=0.95):
|
||||
self.model = None
|
||||
self.thr_predict = thr_predict
|
||||
self.thr_fix_zero = thr_fix_zero
|
||||
self.thr_fix_one = thr_fix_one
|
||||
|
||||
class WarmStartPredictor(ABC):
|
||||
def __init__(self):
|
||||
self.models = [None, None]
|
||||
|
||||
def fit(self, x_train, y_train):
|
||||
assert isinstance(x_train, np.ndarray)
|
||||
assert isinstance(y_train, np.ndarray)
|
||||
assert y_train.shape[1] == 2
|
||||
assert y_train.shape[0] == x_train.shape[0]
|
||||
y_hat = np.average(y_train[:, 1])
|
||||
if y_hat < self.thr_fix_zero or y_hat > self.thr_fix_one:
|
||||
self.model = int(y_hat)
|
||||
else:
|
||||
self.model = make_pipeline(StandardScaler(), LogisticRegression())
|
||||
self.model.fit(x_train, y_train[:, 1].astype(int))
|
||||
assert y_train.shape[1] == 2
|
||||
for i in [0,1]:
|
||||
self.models[i] = self._fit(x_train, y_train[:, i], i)
|
||||
|
||||
def predict(self, x_test):
|
||||
assert isinstance(x_test, np.ndarray)
|
||||
if isinstance(self.model, int):
|
||||
p_test = np.array([[1 - self.model, self.model]
|
||||
for _ in range(x_test.shape[0])])
|
||||
else:
|
||||
p_test = self.model.predict_proba(x_test)
|
||||
p_test[p_test < self.thr_predict] = 0
|
||||
p_test[p_test > 0] = 1
|
||||
p_test = p_test.astype(int)
|
||||
return p_test
|
||||
y_pred = np.zeros((x_test.shape[0], 2), dtype=np.int)
|
||||
for i in [0,1]:
|
||||
if isinstance(self.models[i], int):
|
||||
y_pred[:, i] = self.models[i]
|
||||
else:
|
||||
y_pred[:, i] = self.models[i].predict(x_test)
|
||||
return y_pred
|
||||
|
||||
@abstractmethod
|
||||
def _fit(self, x_train, y_train, label):
|
||||
pass
|
||||
|
||||
|
||||
class LogisticWarmStartPredictor(WarmStartPredictor):
|
||||
def __init__(self,
|
||||
min_samples=100,
|
||||
thr_fix=[0.99, 0.99],
|
||||
thr_balance=[0.95, 0.95],
|
||||
thr_score=[0.95, 0.95]):
|
||||
super().__init__()
|
||||
self.min_samples = min_samples
|
||||
self.thr_fix = thr_fix
|
||||
self.thr_balance = thr_balance
|
||||
self.thr_score = thr_score
|
||||
|
||||
def _fit(self, x_train, y_train, label):
|
||||
y_train_avg = np.average(y_train)
|
||||
|
||||
# If number of samples is too small, don't predict anything.
|
||||
if x_train.shape[0] < self.min_samples:
|
||||
return 0
|
||||
|
||||
# If vast majority of observations are true, always return true.
|
||||
if y_train_avg > self.thr_fix[label]:
|
||||
return 1
|
||||
|
||||
# If dataset is not balanced enough, don't predict anything.
|
||||
if y_train_avg < (1 - self.thr_balance[label]) or y_train_avg > self.thr_balance[label]:
|
||||
return 0
|
||||
|
||||
reg = make_pipeline(StandardScaler(), LogisticRegression())
|
||||
reg_score = np.mean(cross_val_score(reg, x_train, y_train, cv=5))
|
||||
|
||||
# If cross-validation score is too low, don't predict anything.
|
||||
if reg_score < self.thr_score[label]:
|
||||
return 0
|
||||
|
||||
reg.fit(x_train, y_train.astype(int))
|
||||
return reg
|
||||
Reference in New Issue
Block a user