mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-09 19:08:51 -06:00
Replace Hashable by str
This commit is contained in:
@@ -3,15 +3,7 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from typing import (
|
||||
Dict,
|
||||
List,
|
||||
Hashable,
|
||||
Any,
|
||||
TYPE_CHECKING,
|
||||
Tuple,
|
||||
Optional,
|
||||
)
|
||||
from typing import Dict, List, Any, TYPE_CHECKING, Tuple, Optional
|
||||
|
||||
import numpy as np
|
||||
from overrides import overrides
|
||||
@@ -55,8 +47,8 @@ class PrimalSolutionComponent(Component):
|
||||
assert isinstance(threshold, Threshold)
|
||||
assert mode in ["exact", "heuristic"]
|
||||
self.mode = mode
|
||||
self.classifiers: Dict[Hashable, Classifier] = {}
|
||||
self.thresholds: Dict[Hashable, Threshold] = {}
|
||||
self.classifiers: Dict[str, Classifier] = {}
|
||||
self.thresholds: Dict[str, Threshold] = {}
|
||||
self.threshold_prototype = threshold
|
||||
self.classifier_prototype = classifier
|
||||
|
||||
@@ -128,7 +120,7 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
# Convert y_pred into solution
|
||||
solution: Solution = {v: None for v in var_names}
|
||||
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
||||
category_offset: Dict[str, int] = {cat: 0 for cat in x.keys()}
|
||||
for (i, var_name) in enumerate(var_names):
|
||||
category = var_categories[i]
|
||||
if category not in category_offset:
|
||||
@@ -194,7 +186,7 @@ class PrimalSolutionComponent(Component):
|
||||
self,
|
||||
_: Optional[Instance],
|
||||
sample: Sample,
|
||||
) -> Dict[Hashable, Dict[str, float]]:
|
||||
) -> Dict[str, Dict[str, float]]:
|
||||
mip_var_values = sample.get("mip_var_values")
|
||||
var_names = sample.get("var_names")
|
||||
assert mip_var_values is not None
|
||||
@@ -221,13 +213,13 @@ class PrimalSolutionComponent(Component):
|
||||
pred_one_negative = vars_all - pred_one_positive
|
||||
pred_zero_negative = vars_all - pred_zero_positive
|
||||
return {
|
||||
0: classifier_evaluation_dict(
|
||||
"0": classifier_evaluation_dict(
|
||||
tp=len(pred_zero_positive & vars_zero),
|
||||
tn=len(pred_zero_negative & vars_one),
|
||||
fp=len(pred_zero_positive & vars_one),
|
||||
fn=len(pred_zero_negative & vars_zero),
|
||||
),
|
||||
1: classifier_evaluation_dict(
|
||||
"1": classifier_evaluation_dict(
|
||||
tp=len(pred_one_positive & vars_one),
|
||||
tn=len(pred_one_negative & vars_zero),
|
||||
fp=len(pred_one_positive & vars_zero),
|
||||
@@ -238,8 +230,8 @@ class PrimalSolutionComponent(Component):
|
||||
@overrides
|
||||
def fit_xy(
|
||||
self,
|
||||
x: Dict[Hashable, np.ndarray],
|
||||
y: Dict[Hashable, np.ndarray],
|
||||
x: Dict[str, np.ndarray],
|
||||
y: Dict[str, np.ndarray],
|
||||
) -> None:
|
||||
for category in x.keys():
|
||||
clf = self.classifier_prototype.clone()
|
||||
|
||||
Reference in New Issue
Block a user