mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
BenchmarkRunner: add solve method
This commit is contained in:
@@ -3,7 +3,9 @@
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from .solvers import LearningSolver
|
||||
from copy import deepcopy
|
||||
import pandas as pd
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
class BenchmarkRunner:
|
||||
def __init__(self, solvers):
|
||||
@@ -13,59 +15,23 @@ class BenchmarkRunner:
|
||||
self.solvers = solvers
|
||||
self.results = None
|
||||
|
||||
def solve(self, instances, fit=True, tee=False):
|
||||
for (name, solver) in self.solvers.items():
|
||||
for i in tqdm(range(len((instances)))):
|
||||
results = solver.solve(deepcopy(instances[i]), tee=tee)
|
||||
self._push_result(results, solver=solver, name=name, instance=i)
|
||||
if fit:
|
||||
solver.fit()
|
||||
|
||||
def parallel_solve(self, instances, n_jobs=1, n_trials=1):
|
||||
if self.results is None:
|
||||
self.results = pd.DataFrame(columns=["Solver",
|
||||
"Instance",
|
||||
"Wallclock Time",
|
||||
"Lower Bound",
|
||||
"Upper Bound",
|
||||
"Gap",
|
||||
"Nodes",
|
||||
])
|
||||
instances = instances * n_trials
|
||||
for (name, solver) in self.solvers.items():
|
||||
results = solver.parallel_solve(instances,
|
||||
n_jobs=n_jobs,
|
||||
label=name,
|
||||
label="Solve (%s)" % name,
|
||||
collect_training_data=False)
|
||||
for i in range(len(instances)):
|
||||
wallclock_time = None
|
||||
for key in ["Time", "Wall time", "Wallclock time"]:
|
||||
if key not in results[i]["Solver"][0].keys():
|
||||
continue
|
||||
if str(results[i]["Solver"][0][key]) == "<undefined>":
|
||||
continue
|
||||
wallclock_time = float(results[i]["Solver"][0][key])
|
||||
nodes = results[i]["Solver"][0]["Nodes"]
|
||||
lb = results[i]["Problem"][0]["Lower bound"]
|
||||
ub = results[i]["Problem"][0]["Upper bound"]
|
||||
gap = (ub - lb) / lb
|
||||
self.results = self.results.append({
|
||||
"Solver": name,
|
||||
"Instance": i,
|
||||
"Wallclock Time": wallclock_time,
|
||||
"Lower Bound": lb,
|
||||
"Upper Bound": ub,
|
||||
"Gap": gap,
|
||||
"Nodes": nodes,
|
||||
}, ignore_index=True)
|
||||
groups = self.results.groupby("Instance")
|
||||
best_lower_bound = groups["Lower Bound"].transform("max")
|
||||
best_upper_bound = groups["Upper Bound"].transform("min")
|
||||
best_gap = groups["Gap"].transform("min")
|
||||
best_nodes = groups["Nodes"].transform("min")
|
||||
best_wallclock_time = groups["Wallclock Time"].transform("min")
|
||||
self.results["Relative Lower Bound"] = \
|
||||
self.results["Lower Bound"] / best_lower_bound
|
||||
self.results["Relative Upper Bound"] = \
|
||||
self.results["Upper Bound"] / best_upper_bound
|
||||
self.results["Relative Wallclock Time"] = \
|
||||
self.results["Wallclock Time"] / best_wallclock_time
|
||||
self.results["Relative Gap"] = \
|
||||
self.results["Gap"] / best_gap
|
||||
self.results["Relative Nodes"] = \
|
||||
self.results["Nodes"] / best_nodes
|
||||
self._push_result(results[i], solver=solver, name=name, instance=i)
|
||||
|
||||
def raw_results(self):
|
||||
return self.results
|
||||
@@ -83,3 +49,52 @@ class BenchmarkRunner:
|
||||
def fit(self):
|
||||
for (name, solver) in self.solvers.items():
|
||||
solver.fit()
|
||||
|
||||
def _push_result(self, result, solver, name, instance):
|
||||
if self.results is None:
|
||||
self.results = pd.DataFrame(columns=["Solver",
|
||||
"Instance",
|
||||
"Wallclock Time",
|
||||
"Lower Bound",
|
||||
"Upper Bound",
|
||||
"Gap",
|
||||
"Nodes",
|
||||
"Mode",
|
||||
])
|
||||
wallclock_time = None
|
||||
for key in ["Time", "Wall time", "Wallclock time"]:
|
||||
if key not in result["Solver"][0].keys():
|
||||
continue
|
||||
if str(result["Solver"][0][key]) == "<undefined>":
|
||||
continue
|
||||
wallclock_time = float(result["Solver"][0][key])
|
||||
nodes = result["Solver"][0]["Nodes"]
|
||||
lb = result["Problem"][0]["Lower bound"]
|
||||
ub = result["Problem"][0]["Upper bound"]
|
||||
gap = (ub - lb) / lb
|
||||
self.results = self.results.append({
|
||||
"Solver": name,
|
||||
"Instance": instance,
|
||||
"Wallclock Time": wallclock_time,
|
||||
"Lower Bound": lb,
|
||||
"Upper Bound": ub,
|
||||
"Gap": gap,
|
||||
"Nodes": nodes,
|
||||
"Mode": solver.mode,
|
||||
}, ignore_index=True)
|
||||
groups = self.results.groupby("Instance")
|
||||
best_lower_bound = groups["Lower Bound"].transform("max")
|
||||
best_upper_bound = groups["Upper Bound"].transform("min")
|
||||
best_gap = groups["Gap"].transform("min")
|
||||
best_nodes = groups["Nodes"].transform("min")
|
||||
best_wallclock_time = groups["Wallclock Time"].transform("min")
|
||||
self.results["Relative Lower Bound"] = \
|
||||
self.results["Lower Bound"] / best_lower_bound
|
||||
self.results["Relative Upper Bound"] = \
|
||||
self.results["Upper Bound"] / best_upper_bound
|
||||
self.results["Relative Wallclock Time"] = \
|
||||
self.results["Wallclock Time"] / best_wallclock_time
|
||||
self.results["Relative Gap"] = \
|
||||
self.results["Gap"] / best_gap
|
||||
self.results["Relative Nodes"] = \
|
||||
self.results["Nodes"] / best_nodes
|
||||
|
||||
Reference in New Issue
Block a user