BenchmarkRunner: add solve method

pull/1/head
Alinson S. Xavier 6 years ago
parent c3902ad61c
commit ffb29d2bbb

@ -3,7 +3,9 @@
# Written by Alinson S. Xavier <axavier@anl.gov> # Written by Alinson S. Xavier <axavier@anl.gov>
from .solvers import LearningSolver from .solvers import LearningSolver
from copy import deepcopy
import pandas as pd import pandas as pd
from tqdm.auto import tqdm
class BenchmarkRunner: class BenchmarkRunner:
def __init__(self, solvers): def __init__(self, solvers):
@ -13,59 +15,23 @@ class BenchmarkRunner:
self.solvers = solvers self.solvers = solvers
self.results = None self.results = None
def solve(self, instances, fit=True, tee=False):
for (name, solver) in self.solvers.items():
for i in tqdm(range(len((instances)))):
results = solver.solve(deepcopy(instances[i]), tee=tee)
self._push_result(results, solver=solver, name=name, instance=i)
if fit:
solver.fit()
def parallel_solve(self, instances, n_jobs=1, n_trials=1): def parallel_solve(self, instances, n_jobs=1, n_trials=1):
if self.results is None:
self.results = pd.DataFrame(columns=["Solver",
"Instance",
"Wallclock Time",
"Lower Bound",
"Upper Bound",
"Gap",
"Nodes",
])
instances = instances * n_trials instances = instances * n_trials
for (name, solver) in self.solvers.items(): for (name, solver) in self.solvers.items():
results = solver.parallel_solve(instances, results = solver.parallel_solve(instances,
n_jobs=n_jobs, n_jobs=n_jobs,
label=name, label="Solve (%s)" % name,
collect_training_data=False) collect_training_data=False)
for i in range(len(instances)): for i in range(len(instances)):
wallclock_time = None self._push_result(results[i], solver=solver, name=name, instance=i)
for key in ["Time", "Wall time", "Wallclock time"]:
if key not in results[i]["Solver"][0].keys():
continue
if str(results[i]["Solver"][0][key]) == "<undefined>":
continue
wallclock_time = float(results[i]["Solver"][0][key])
nodes = results[i]["Solver"][0]["Nodes"]
lb = results[i]["Problem"][0]["Lower bound"]
ub = results[i]["Problem"][0]["Upper bound"]
gap = (ub - lb) / lb
self.results = self.results.append({
"Solver": name,
"Instance": i,
"Wallclock Time": wallclock_time,
"Lower Bound": lb,
"Upper Bound": ub,
"Gap": gap,
"Nodes": nodes,
}, ignore_index=True)
groups = self.results.groupby("Instance")
best_lower_bound = groups["Lower Bound"].transform("max")
best_upper_bound = groups["Upper Bound"].transform("min")
best_gap = groups["Gap"].transform("min")
best_nodes = groups["Nodes"].transform("min")
best_wallclock_time = groups["Wallclock Time"].transform("min")
self.results["Relative Lower Bound"] = \
self.results["Lower Bound"] / best_lower_bound
self.results["Relative Upper Bound"] = \
self.results["Upper Bound"] / best_upper_bound
self.results["Relative Wallclock Time"] = \
self.results["Wallclock Time"] / best_wallclock_time
self.results["Relative Gap"] = \
self.results["Gap"] / best_gap
self.results["Relative Nodes"] = \
self.results["Nodes"] / best_nodes
def raw_results(self): def raw_results(self):
return self.results return self.results
@ -83,3 +49,52 @@ class BenchmarkRunner:
def fit(self): def fit(self):
for (name, solver) in self.solvers.items(): for (name, solver) in self.solvers.items():
solver.fit() solver.fit()
def _push_result(self, result, solver, name, instance):
if self.results is None:
self.results = pd.DataFrame(columns=["Solver",
"Instance",
"Wallclock Time",
"Lower Bound",
"Upper Bound",
"Gap",
"Nodes",
"Mode",
])
wallclock_time = None
for key in ["Time", "Wall time", "Wallclock time"]:
if key not in result["Solver"][0].keys():
continue
if str(result["Solver"][0][key]) == "<undefined>":
continue
wallclock_time = float(result["Solver"][0][key])
nodes = result["Solver"][0]["Nodes"]
lb = result["Problem"][0]["Lower bound"]
ub = result["Problem"][0]["Upper bound"]
gap = (ub - lb) / lb
self.results = self.results.append({
"Solver": name,
"Instance": instance,
"Wallclock Time": wallclock_time,
"Lower Bound": lb,
"Upper Bound": ub,
"Gap": gap,
"Nodes": nodes,
"Mode": solver.mode,
}, ignore_index=True)
groups = self.results.groupby("Instance")
best_lower_bound = groups["Lower Bound"].transform("max")
best_upper_bound = groups["Upper Bound"].transform("min")
best_gap = groups["Gap"].transform("min")
best_nodes = groups["Nodes"].transform("min")
best_wallclock_time = groups["Wallclock Time"].transform("min")
self.results["Relative Lower Bound"] = \
self.results["Lower Bound"] / best_lower_bound
self.results["Relative Upper Bound"] = \
self.results["Upper Bound"] / best_upper_bound
self.results["Relative Wallclock Time"] = \
self.results["Wallclock Time"] / best_wallclock_time
self.results["Relative Gap"] = \
self.results["Gap"] / best_gap
self.results["Relative Nodes"] = \
self.results["Nodes"] / best_nodes

Loading…
Cancel
Save