|
|
|
@ -3,7 +3,9 @@
|
|
|
|
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
|
|
|
|
|
|
|
|
|
from .solvers import LearningSolver
|
|
|
|
|
from copy import deepcopy
|
|
|
|
|
import pandas as pd
|
|
|
|
|
from tqdm.auto import tqdm
|
|
|
|
|
|
|
|
|
|
class BenchmarkRunner:
|
|
|
|
|
def __init__(self, solvers):
|
|
|
|
@ -13,7 +15,42 @@ class BenchmarkRunner:
|
|
|
|
|
self.solvers = solvers
|
|
|
|
|
self.results = None
|
|
|
|
|
|
|
|
|
|
def solve(self, instances, fit=True, tee=False):
|
|
|
|
|
for (name, solver) in self.solvers.items():
|
|
|
|
|
for i in tqdm(range(len((instances)))):
|
|
|
|
|
results = solver.solve(deepcopy(instances[i]), tee=tee)
|
|
|
|
|
self._push_result(results, solver=solver, name=name, instance=i)
|
|
|
|
|
if fit:
|
|
|
|
|
solver.fit()
|
|
|
|
|
|
|
|
|
|
def parallel_solve(self, instances, n_jobs=1, n_trials=1):
|
|
|
|
|
instances = instances * n_trials
|
|
|
|
|
for (name, solver) in self.solvers.items():
|
|
|
|
|
results = solver.parallel_solve(instances,
|
|
|
|
|
n_jobs=n_jobs,
|
|
|
|
|
label="Solve (%s)" % name,
|
|
|
|
|
collect_training_data=False)
|
|
|
|
|
for i in range(len(instances)):
|
|
|
|
|
self._push_result(results[i], solver=solver, name=name, instance=i)
|
|
|
|
|
|
|
|
|
|
def raw_results(self):
|
|
|
|
|
return self.results
|
|
|
|
|
|
|
|
|
|
def save_results(self, filename):
|
|
|
|
|
self.results.to_csv(filename)
|
|
|
|
|
|
|
|
|
|
def load_results(self, filename):
|
|
|
|
|
self.results = pd.read_csv(filename, index_col=0)
|
|
|
|
|
|
|
|
|
|
def load_state(self, filename):
|
|
|
|
|
for (name, solver) in self.solvers.items():
|
|
|
|
|
solver.load_state(filename)
|
|
|
|
|
|
|
|
|
|
def fit(self):
|
|
|
|
|
for (name, solver) in self.solvers.items():
|
|
|
|
|
solver.fit()
|
|
|
|
|
|
|
|
|
|
def _push_result(self, result, solver, name, instance):
|
|
|
|
|
if self.results is None:
|
|
|
|
|
self.results = pd.DataFrame(columns=["Solver",
|
|
|
|
|
"Instance",
|
|
|
|
@ -22,33 +59,28 @@ class BenchmarkRunner:
|
|
|
|
|
"Upper Bound",
|
|
|
|
|
"Gap",
|
|
|
|
|
"Nodes",
|
|
|
|
|
"Mode",
|
|
|
|
|
])
|
|
|
|
|
instances = instances * n_trials
|
|
|
|
|
for (name, solver) in self.solvers.items():
|
|
|
|
|
results = solver.parallel_solve(instances,
|
|
|
|
|
n_jobs=n_jobs,
|
|
|
|
|
label=name,
|
|
|
|
|
collect_training_data=False)
|
|
|
|
|
for i in range(len(instances)):
|
|
|
|
|
wallclock_time = None
|
|
|
|
|
for key in ["Time", "Wall time", "Wallclock time"]:
|
|
|
|
|
if key not in results[i]["Solver"][0].keys():
|
|
|
|
|
if key not in result["Solver"][0].keys():
|
|
|
|
|
continue
|
|
|
|
|
if str(results[i]["Solver"][0][key]) == "<undefined>":
|
|
|
|
|
if str(result["Solver"][0][key]) == "<undefined>":
|
|
|
|
|
continue
|
|
|
|
|
wallclock_time = float(results[i]["Solver"][0][key])
|
|
|
|
|
nodes = results[i]["Solver"][0]["Nodes"]
|
|
|
|
|
lb = results[i]["Problem"][0]["Lower bound"]
|
|
|
|
|
ub = results[i]["Problem"][0]["Upper bound"]
|
|
|
|
|
wallclock_time = float(result["Solver"][0][key])
|
|
|
|
|
nodes = result["Solver"][0]["Nodes"]
|
|
|
|
|
lb = result["Problem"][0]["Lower bound"]
|
|
|
|
|
ub = result["Problem"][0]["Upper bound"]
|
|
|
|
|
gap = (ub - lb) / lb
|
|
|
|
|
self.results = self.results.append({
|
|
|
|
|
"Solver": name,
|
|
|
|
|
"Instance": i,
|
|
|
|
|
"Instance": instance,
|
|
|
|
|
"Wallclock Time": wallclock_time,
|
|
|
|
|
"Lower Bound": lb,
|
|
|
|
|
"Upper Bound": ub,
|
|
|
|
|
"Gap": gap,
|
|
|
|
|
"Nodes": nodes,
|
|
|
|
|
"Mode": solver.mode,
|
|
|
|
|
}, ignore_index=True)
|
|
|
|
|
groups = self.results.groupby("Instance")
|
|
|
|
|
best_lower_bound = groups["Lower Bound"].transform("max")
|
|
|
|
@ -66,20 +98,3 @@ class BenchmarkRunner:
|
|
|
|
|
self.results["Gap"] / best_gap
|
|
|
|
|
self.results["Relative Nodes"] = \
|
|
|
|
|
self.results["Nodes"] / best_nodes
|
|
|
|
|
|
|
|
|
|
def raw_results(self):
|
|
|
|
|
return self.results
|
|
|
|
|
|
|
|
|
|
def save_results(self, filename):
|
|
|
|
|
self.results.to_csv(filename)
|
|
|
|
|
|
|
|
|
|
def load_results(self, filename):
|
|
|
|
|
self.results = pd.read_csv(filename, index_col=0)
|
|
|
|
|
|
|
|
|
|
def load_state(self, filename):
|
|
|
|
|
for (name, solver) in self.solvers.items():
|
|
|
|
|
solver.load_state(filename)
|
|
|
|
|
|
|
|
|
|
def fit(self):
|
|
|
|
|
for (name, solver) in self.solvers.items():
|
|
|
|
|
solver.fit()
|
|
|
|
|