Add units to input and output files; bump version to 0.2.0

gh-actions v0.2.0
Alinson S. Xavier 5 years ago
parent b8cf6537a0
commit 0fc64085a8
No known key found for this signature in database
GPG Key ID: A796166E4E218E02

@ -10,21 +10,10 @@ uuid = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
version = "0.5.0"
[[BinaryProvider]]
deps = ["Libdl", "Logging", "SHA"]
git-tree-sha1 = "ecdec412a9abc8db54c0efc5548c64dfce072058"
deps = ["Libdl", "SHA"]
git-tree-sha1 = "5b08ed6036d9d3f0ee6369410b830f8873d4024c"
uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232"
version = "0.5.10"
[[Bzip2_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "3663bfffede2ef41358b6fc2e1d8a6d50b3c3904"
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
version = "1.0.6+2"
[[CEnum]]
git-tree-sha1 = "1b77a77c3b28e0b3f413f7567c9bb8dd9bdccd14"
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
version = "0.3.0"
version = "0.5.8"
[[Calculus]]
deps = ["LinearAlgebra"]
@ -34,45 +23,33 @@ version = "0.5.1"
[[Cbc]]
deps = ["BinaryProvider", "Libdl", "MathOptInterface", "MathProgBase", "SparseArrays", "Test"]
git-tree-sha1 = "62d80f448b5d77b3f0a59cecf6197aad2a3aa280"
git-tree-sha1 = "0d51c2d66fc22e5e3fc64b6092ba0f0b3839c8c1"
uuid = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
version = "0.6.7"
version = "0.6.6"
[[Clp]]
deps = ["BinaryProvider", "CEnum", "Clp_jll", "Libdl", "MathOptInterface", "SparseArrays"]
git-tree-sha1 = "cb38198edf176b720461273fd4a6c678ef9b2ec5"
deps = ["BinaryProvider", "Libdl", "LinearAlgebra", "MathOptInterface", "MathProgBase", "SparseArrays"]
git-tree-sha1 = "0872354eaeb05a86e400f45abaac1dc93da7bf76"
uuid = "e2554f3b-3117-50c0-817c-e040a3ddf72d"
version = "0.8.0"
[[Clp_jll]]
deps = ["CoinUtils_jll", "CompilerSupportLibraries_jll", "Libdl", "OpenBLAS32_jll", "Osi_jll", "Pkg"]
git-tree-sha1 = "70fe9e52fd95fa37f645e3d30f08f436cc5b1457"
uuid = "06985876-5285-5a41-9fcb-8948a742cc53"
version = "1.17.6+5"
version = "0.7.1"
[[CodeTracking]]
deps = ["InteractiveUtils", "UUIDs"]
git-tree-sha1 = "cab4da992adc0a64f63fa30d2db2fd8bec40cab4"
git-tree-sha1 = "0becdab7e6fbbcb7b88d8de5b72e5bb2f28239f3"
uuid = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2"
version = "0.5.11"
version = "0.5.8"
[[CodecBzip2]]
deps = ["Bzip2_jll", "Libdl", "TranscodingStreams"]
git-tree-sha1 = "2e62a725210ce3c3c2e1a3080190e7ca491f18d7"
deps = ["BinaryProvider", "Libdl", "TranscodingStreams"]
git-tree-sha1 = "5db086e510c11b4c87d05067627eadb2dc079995"
uuid = "523fee87-0ab8-5b00-afb7-3ecf72e48cfd"
version = "0.7.2"
version = "0.6.0"
[[CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da"
deps = ["BinaryProvider", "Libdl", "TranscodingStreams"]
git-tree-sha1 = "05916673a2627dd91b4969ff8ba6941bc85a960e"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.0"
[[CoinUtils_jll]]
deps = ["CompilerSupportLibraries_jll", "Libdl", "OpenBLAS32_jll", "Pkg"]
git-tree-sha1 = "ee1f06ab89337b7f194c29377ab174e752cdf60d"
uuid = "be027038-0da8-5614-b30d-e42594cb92df"
version = "2.11.3+3"
version = "0.6.0"
[[CommonSubexpressions]]
deps = ["Test"]
@ -82,21 +59,21 @@ version = "0.2.0"
[[CompilerSupportLibraries_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "7c4f882c41faa72118841185afc58a2eb00ef612"
git-tree-sha1 = "b57c5d019367c90f234a7bc7e24ff0a84971da5d"
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "0.3.3+0"
version = "0.2.0+1"
[[CoordinateTransformations]]
deps = ["LinearAlgebra", "StaticArrays"]
git-tree-sha1 = "c230b1d94db9fdd073168830437e64b9db627fcb"
deps = ["LinearAlgebra", "Rotations", "StaticArrays"]
git-tree-sha1 = "71333ea3f841bca6c1aa2863f11758eb9b37bfbc"
uuid = "150eb455-5306-5404-9cee-2592286d6298"
version = "0.6.0"
version = "0.5.1"
[[DataStructures]]
deps = ["InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "af6d9c86e191c917c2276fbede1137e8ea20157f"
git-tree-sha1 = "5a431d46abf2ef2a4d5d00bd0ae61f651cf854c8"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.17.17"
version = "0.17.10"
[[Dates]]
deps = ["Printf"]
@ -123,9 +100,9 @@ uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[ForwardDiff]]
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "NaNMath", "Random", "SpecialFunctions", "StaticArrays"]
git-tree-sha1 = "869540e4367122fbffaace383a5bdc34d6e5e5ac"
git-tree-sha1 = "88b082d492be6b63f967b6c96b352e25ced1a34c"
uuid = "f6369f11-7733-5829-9624-2563aa707210"
version = "0.10.10"
version = "0.10.9"
[[Geodesy]]
deps = ["CoordinateTransformations", "Dates", "LinearAlgebra", "StaticArrays", "Test"]
@ -135,9 +112,9 @@ version = "0.5.0"
[[HTTP]]
deps = ["Base64", "Dates", "IniFile", "MbedTLS", "Sockets"]
git-tree-sha1 = "ec87d5e2acbe1693789efbbe14f5ea7525758f71"
git-tree-sha1 = "8d9bdd55c9d0d6ddf08f8b5229f90b7f274b6777"
uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3"
version = "0.8.15"
version = "0.8.12"
[[IniFile]]
deps = ["Test"]
@ -163,18 +140,17 @@ version = "0.2.0"
[[JuMP]]
deps = ["Calculus", "DataStructures", "ForwardDiff", "LinearAlgebra", "MathOptInterface", "MutableArithmetics", "NaNMath", "Random", "SparseArrays", "Statistics"]
git-tree-sha1 = "84c1cf8bec4729b8b2ef4dfc4e1db1b892ad0d30"
git-tree-sha1 = "8e87337fd19b6717fd9d5324bfab99848e363d9f"
uuid = "4076af6c-e467-56ae-b986-b466b2749572"
version = "0.21.2"
version = "0.21.1"
[[JuliaInterpreter]]
deps = ["CodeTracking", "InteractiveUtils", "Random", "UUIDs"]
git-tree-sha1 = "adfa56c6a1066d3baadb5d2a070d0f966d880a6d"
git-tree-sha1 = "2eadbbde5534346cbb837c3a75b377cba477a06d"
uuid = "aa1ae85d-cabe-5617-a682-6adf51b2e16a"
version = "0.7.17"
version = "0.7.13"
[[LibGit2]]
deps = ["Printf"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[Libdl]]
@ -189,9 +165,9 @@ uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[LoweredCodeUtils]]
deps = ["JuliaInterpreter"]
git-tree-sha1 = "225f0035f01c24858c0884f38bb519e22b0a5150"
git-tree-sha1 = "1c41621653250b2824b6e664ac5bd805558aeff9"
uuid = "6f1432cf-f94c-5a45-995e-cdbf5db27b0b"
version = "0.4.5"
version = "0.4.3"
[[Markdown]]
deps = ["Base64"]
@ -199,9 +175,9 @@ uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[MathOptInterface]]
deps = ["BenchmarkTools", "CodecBzip2", "CodecZlib", "JSON", "JSONSchema", "LinearAlgebra", "MutableArithmetics", "OrderedCollections", "SparseArrays", "Test", "Unicode"]
git-tree-sha1 = "27f2ef85879b8f1d144266ab44f076ba0dfbd8a1"
git-tree-sha1 = "f0d60e42d8b64dd1b511e2dc13e0b72ba1dfc9cf"
uuid = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
version = "0.9.13"
version = "0.9.12"
[[MathProgBase]]
deps = ["LinearAlgebra", "SparseArrays"]
@ -211,36 +187,30 @@ version = "0.7.8"
[[MbedTLS]]
deps = ["Dates", "MbedTLS_jll", "Random", "Sockets"]
git-tree-sha1 = "426a6978b03a97ceb7ead77775a1da066343ec6e"
git-tree-sha1 = "a9e2221f06b42f56052f43ad7edecb01d0ef5ab4"
uuid = "739be429-bea8-5141-9913-cc70e7f3736d"
version = "1.0.2"
version = "1.0.1"
[[MbedTLS_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "c83f5a1d038f034ad0549f9ee4d5fac3fb429e33"
git-tree-sha1 = "066a4467008745eed36dad973ceb66405785a621"
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
version = "2.16.0+2"
version = "2.16.0+1"
[[Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[MutableArithmetics]]
deps = ["LinearAlgebra", "SparseArrays", "Test"]
git-tree-sha1 = "e1edd618a8f39d16f8595dd622a63b25f759cf8a"
git-tree-sha1 = "020d4f22e1151e0613edf91a56535379564c1ce8"
uuid = "d8a4904e-b15c-11e9-3269-09a3773c0cb0"
version = "0.2.9"
version = "0.2.7"
[[NaNMath]]
git-tree-sha1 = "928b8ca9b2791081dc71a51c55347c27c618760f"
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
version = "0.3.3"
[[OpenBLAS32_jll]]
deps = ["CompilerSupportLibraries_jll", "Libdl", "Pkg"]
git-tree-sha1 = "793b33911239d2651c356c823492b58d6490d36a"
uuid = "656ef2d0-ae68-5445-9ca0-591084a874a2"
version = "0.3.9+4"
[[OpenSpecFun_jll]]
deps = ["CompilerSupportLibraries_jll", "Libdl", "Pkg"]
git-tree-sha1 = "d51c416559217d974a1113522d5919235ae67a87"
@ -248,24 +218,19 @@ uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e"
version = "0.5.3+3"
[[OrderedCollections]]
git-tree-sha1 = "12ce190210d278e12644bcadf5b21cbdcf225cd3"
deps = ["Random", "Serialization", "Test"]
git-tree-sha1 = "c4c13474d23c60d20a67b217f1d7f22a40edf8f1"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.2.0"
[[Osi_jll]]
deps = ["CoinUtils_jll", "CompilerSupportLibraries_jll", "Libdl", "OpenBLAS32_jll", "Pkg"]
git-tree-sha1 = "bd436a97280df40938e66ae8d18e57aceb072856"
uuid = "7da25872-d9ce-5375-a4d3-7a845f58efdd"
version = "0.108.5+3"
version = "1.1.0"
[[Parsers]]
deps = ["Dates", "Test"]
git-tree-sha1 = "f0abb338b4d00306500056a3fd44c221b8473ef2"
git-tree-sha1 = "0c16b3179190d3046c073440d94172cfc3bb0553"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "1.0.4"
version = "0.3.12"
[[Pkg]]
deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"]
deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Test", "UUIDs"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[Printf]]
@ -274,9 +239,9 @@ uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[ProgressBars]]
deps = ["Printf"]
git-tree-sha1 = "fec529e15cccf342087de2ccda1b0b9064cbbb53"
git-tree-sha1 = "e66732bbdaad368cfc642cef1f639df5812dc818"
uuid = "49802e3a-d2f1-5c88-81d8-b72133a6f568"
version = "0.7.1"
version = "0.6.0"
[[REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets"]
@ -288,9 +253,15 @@ uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[Revise]]
deps = ["CodeTracking", "Distributed", "FileWatching", "JuliaInterpreter", "LibGit2", "LoweredCodeUtils", "OrderedCollections", "Pkg", "REPL", "UUIDs", "Unicode"]
git-tree-sha1 = "adb8b66d5e53151628a9bcf51049ed70c8fa7626"
git-tree-sha1 = "3c04c929f8720c2fabb12534cd102a2356a7705c"
uuid = "295af30f-e4ad-537b-8983-00126c2a3abe"
version = "2.7.0"
version = "2.5.4"
[[Rotations]]
deps = ["LinearAlgebra", "StaticArrays", "Statistics"]
git-tree-sha1 = "d5f83867093db7319a9366d55f29280ecae9bcda"
uuid = "6038ab10-8711-5258-84ad-4b1120ba62dc"
version = "0.13.0"
[[SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
@ -307,15 +278,15 @@ uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[SpecialFunctions]]
deps = ["OpenSpecFun_jll"]
git-tree-sha1 = "d8d8b8a9f4119829410ecd706da4cc8594a1e020"
git-tree-sha1 = "e19b98acb182567bcb7b75bb5d9eedf3a3b5ec6c"
uuid = "276daf66-3868-5448-9aa4-cd146d93841b"
version = "0.10.3"
version = "0.10.0"
[[StaticArrays]]
deps = ["LinearAlgebra", "Random", "Statistics"]
git-tree-sha1 = "5c06c0aeb81bef54aed4b3f446847905eb6cbda0"
git-tree-sha1 = "5a3bcb6233adabde68ebc97be66e95dcb787424c"
uuid = "90137ffa-7385-5640-81b9-e52037218182"
version = "0.12.3"
version = "0.12.1"
[[Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
@ -337,9 +308,3 @@ uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[Zlib_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "a2e0d558f6031002e380a90613b199e37a8565bf"
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
version = "1.2.11+10"

@ -1,7 +1,7 @@
name = "RELOG"
uuid = "a2afcdf7-cf04-4913-85f9-c0d81ddf2008"
authors = ["Alinson S Xavier <axavier@anl.gov>"]
version = "0.1.0"
version = "0.2.0"
[deps]
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
@ -24,4 +24,4 @@ JSON = "0.21"
JSONSchema = "0.2"
JuMP = "0.21"
MathOptInterface = "0.9"
ProgressBars = "0.7"
ProgressBars = "0.6"

@ -275,6 +275,6 @@ POSSIBILITY OF SUCH DAMAGE.
</html>
<!--
MkDocs version : 1.1
Build Date UTC : 2020-05-22 20:22:06
MkDocs version : 1.0.4
Build Date UTC : 2020-06-05 20:38:00
-->

@ -154,21 +154,21 @@
</thead>
<tbody>
<tr>
<td align="left"><code>time periods</code></td>
<td>Number of time periods in the simulation.</td>
<td align="left"><code>Time horizon (years)</code></td>
<td>Number of years in the simulation.</td>
</tr>
</tbody>
</table>
<h3 id="example">Example</h3>
<pre><code class="json">{
&quot;parameters&quot;: {
&quot;time periods&quot;: 2
&quot;Parameters&quot;: {
&quot;Time horizon (years)&quot;: 2
}
}
</code></pre>
<h2 id="products">Products</h2>
<p>The <strong>products</strong> section describes all products and subproducts in the simulation. The field <code>instance["products"]</code> is a dictionary mapping the name of the product to a dictionary which describes its characteristics. Each product description contains the following keys:</p>
<p>The <strong>products</strong> section describes all products and subproducts in the simulation. The field <code>instance["Products"]</code> is a dictionary mapping the name of the product to a dictionary which describes its characteristics. Each product description contains the following keys:</p>
<table>
<thead>
<tr>
@ -178,11 +178,11 @@
</thead>
<tbody>
<tr>
<td align="left"><code>transportation cost</code></td>
<td>The cost (in dollars per km per tonnes) to transport this product. Must be a timeseries.</td>
<td align="left"><code>Transportation cost ($/km/tonne)</code></td>
<td>The cost to transport this product. Must be a timeseries.</td>
</tr>
<tr>
<td align="left"><code>initial amounts</code></td>
<td align="left"><code>Initial amounts</code></td>
<td>A dictionary mapping the name of each location to its description (see below). If this product is not initially available, this key may be omitted. Must be a timeseries.</td>
</tr>
</tbody>
@ -197,57 +197,57 @@
</thead>
<tbody>
<tr>
<td align="left"><code>latitude</code></td>
<td>The latitude of the location, in degrees.</td>
<td align="left"><code>Latitude (deg)</code></td>
<td>The latitude of the location.</td>
</tr>
<tr>
<td align="left"><code>longitude</code></td>
<td>The longitude of the location, in degrees.</td>
<td align="left"><code>Longitude (deg)</code></td>
<td>The longitude of the location.</td>
</tr>
<tr>
<td align="left"><code>amount</code></td>
<td>The amount (in tonnes) of the product initially available at the location. Must be a timeseries.</td>
<td align="left"><code>Amount (tonne)</code></td>
<td>The amount of the product initially available at the location. Must be a timeseries.</td>
</tr>
</tbody>
</table>
<h3 id="example_1">Example</h3>
<pre><code class="json">{
&quot;products&quot;: {
&quot;Products&quot;: {
&quot;P1&quot;: {
&quot;transportation cost&quot;: [0.015, 0.015],
&quot;initial amounts&quot;: {
&quot;Transportation cost ($/km/tonne)&quot;: [0.015, 0.015],
&quot;Initial amounts&quot;: {
&quot;C1&quot;: {
&quot;latitude&quot;: 7.0,
&quot;longitude&quot;: 7.0,
&quot;amount&quot;: [934.56, 934.56]
&quot;Latitude (deg)&quot;: 7.0,
&quot;Longitude (deg)&quot;: 7.0,
&quot;Amount (tonne)&quot;: [934.56, 934.56]
},
&quot;C2&quot;: {
&quot;latitude&quot;: 7.0,
&quot;longitude&quot;: 19.0,
&quot;amount&quot;: [198.95, 198.95]
&quot;Latitude (deg)&quot;: 7.0,
&quot;Longitude (deg)&quot;: 19.0,
&quot;Amount (tonne)&quot;: [198.95, 198.95]
},
&quot;C3&quot;: {
&quot;latitude&quot;: 84.0,
&quot;longitude&quot;: 76.0,
&quot;amount&quot;: [212.97, 212.97]
&quot;Latitude (deg)&quot;: 84.0,
&quot;Longitude (deg)&quot;: 76.0,
&quot;Amount (tonne)&quot;: [212.97, 212.97]
}
}
},
&quot;P2&quot;: {
&quot;transportation cost&quot;: [0.02, 0.02]
&quot;Transportation cost ($/km/tonne)&quot;: [0.02, 0.02]
},
&quot;P3&quot;: {
&quot;transportation cost&quot;: [0.0125, 0.0125]
&quot;Transportation cost ($/km/tonne)&quot;: [0.0125, 0.0125]
},
&quot;P4&quot;: {
&quot;transportation cost&quot;: [0.0175, 0.0175]
&quot;Transportation cost ($/km/tonne)&quot;: [0.0175, 0.0175]
}
}
}
</code></pre>
<h2 id="processing-plants">Processing Plants</h2>
<p>The <strong>plants</strong> section describes the available types of reverse manufacturing plants, their potential locations and associated costs, as well as their inputs and outputs. The field <code>instance["plants"]</code> is a dictionary mapping the name of the plant to a dictionary with the following keys:</p>
<p>The <strong>plants</strong> section describes the available types of reverse manufacturing plants, their potential locations and associated costs, as well as their inputs and outputs. The field <code>instance["Plants"]</code> is a dictionary mapping the name of the plant to a dictionary with the following keys:</p>
<table>
<thead>
<tr>
@ -257,15 +257,15 @@
</thead>
<tbody>
<tr>
<td align="left"><code>input</code></td>
<td align="left"><code>Input</code></td>
<td>The name of the product that this plant takes as input. Only one input is accepted per plant.</td>
</tr>
<tr>
<td align="left"><code>outputs</code></td>
<td align="left"><code>Outputs (tonne)</code></td>
<td>A dictionary specifying how many tonnes of each product is produced for each tonnes of input. For example, if the plant outputs 0.5 tonnes of P2 and 0.25 tonnes of P3 for each tonnes of P1 provided, then this entry should be <code>{"P2": 0.5, "P3": 0.25}</code>. If the plant does not output anything, this key may be omitted.</td>
</tr>
<tr>
<td align="left"><code>locations</code></td>
<td align="left"><code>Locations</code></td>
<td>A dictionary mapping the name of the location to a dictionary which describes the site characteristics (see below).</td>
</tr>
</tbody>
@ -280,19 +280,19 @@
</thead>
<tbody>
<tr>
<td align="left"><code>latitude</code></td>
<td align="left"><code>Latitude (deg)</code></td>
<td>The latitude of the location, in degrees.</td>
</tr>
<tr>
<td align="left"><code>longitude</code></td>
<td align="left"><code>Longitude (deg)</code></td>
<td>The longitude of the location, in degrees.</td>
</tr>
<tr>
<td align="left"><code>disposal</code></td>
<td align="left"><code>Disposal</code></td>
<td>A dictionary describing what products can be disposed locally at the plant.</td>
</tr>
<tr>
<td align="left"><code>capacities</code></td>
<td align="left"><code>Capacities (tonne)</code></td>
<td>A dictionary describing what plant sizes are allowed, and their characteristics.</td>
</tr>
</tbody>
@ -307,12 +307,12 @@
</thead>
<tbody>
<tr>
<td align="left"><code>cost</code></td>
<td>The cost (in dollars per tonnes) to dispose of the product. Must be a timeseries.</td>
<td align="left"><code>Cost ($/tonne)</code></td>
<td>The cost to dispose of the product. Must be a timeseries.</td>
</tr>
<tr>
<td align="left"><code>limit</code></td>
<td>The maximum amount (in tonnes) that can be disposed of. If an unlimited amount can be disposed, this key may be omitted. Must be a timeseries.</td>
<td align="left"><code>Limit (tonne)</code></td>
<td>The maximum amount that can be disposed of. If an unlimited amount can be disposed, this key may be omitted. Must be a timeseries.</td>
</tr>
</tbody>
</table>
@ -326,48 +326,48 @@
</thead>
<tbody>
<tr>
<td align="left"><code>opening cost</code></td>
<td>The cost (in dollars) to open a plant of this size.</td>
<td align="left"><code>Opening cost ($)</code></td>
<td>The cost to open a plant of this size.</td>
</tr>
<tr>
<td align="left"><code>fixed operating cost</code></td>
<td>The cost (in dollars) to keep the plant open, even if the plant doesn't process anything. Must be a timeseries.</td>
<td align="left"><code>Fixed operating cost ($)</code></td>
<td>The cost to keep the plant open, even if the plant doesn't process anything. Must be a timeseries.</td>
</tr>
<tr>
<td align="left"><code>variable operating cost</code></td>
<td>The cost (in dollars per tonnes) that the plant incurs to process each tonne of input. Must be a timeseries.</td>
<td align="left"><code>Variable operating cost ($/tonne)</code></td>
<td>The cost that the plant incurs to process each tonne of input. Must be a timeseries.</td>
</tr>
</tbody>
</table>
<h3 id="example_2">Example</h3>
<pre><code class="json">{
&quot;plants&quot;: {
&quot;Plants&quot;: {
&quot;F1&quot;: {
&quot;input&quot;: &quot;P1&quot;,
&quot;outputs&quot;: {
&quot;Input&quot;: &quot;P1&quot;,
&quot;Outputs (tonne)&quot;: {
&quot;P2&quot;: 0.2,
&quot;P3&quot;: 0.5
},
&quot;locations&quot;: {
&quot;Locations&quot;: {
&quot;L1&quot;: {
&quot;latitude&quot;: 0.0,
&quot;longitude&quot;: 0.0,
&quot;disposal&quot;: {
&quot;Latitude (deg)&quot;: 0.0,
&quot;Longitude (deg)&quot;: 0.0,
&quot;Disposal&quot;: {
&quot;P2&quot;: {
&quot;cost&quot;: [-10.0, -12.0],
&quot;limit&quot;: [1.0, 1.0]
&quot;Cost ($/tonne)&quot;: [-10.0, -12.0],
&quot;Limit (tonne)&quot;: [1.0, 1.0]
}
},
&quot;capacities&quot;: {
&quot;Capacities (tonne)&quot;: {
&quot;100&quot;: {
&quot;opening cost&quot;: [500, 530],
&quot;fixed operating cost&quot;: [300.0, 310.0],
&quot;variable operating cost&quot;: [5.0, 5.2]
&quot;Opening cost ($)&quot;: [500, 530],
&quot;Fixed operating cost ($)&quot;: [300.0, 310.0],
&quot;Variable operating cost ($/tonne)&quot;: [5.0, 5.2]
},
&quot;500&quot;: {
&quot;opening cost&quot;: [750, 760],
&quot;fixed operating cost&quot;: [400.0, 450.0],
&quot;variable operating cost&quot;: [5.0, 5.2]
&quot;Opening cost ($)&quot;: [750, 760],
&quot;Fixed operating cost ($)&quot;: [400.0, 450.0],
&quot;Variable operating cost ($/tonne)&quot;: [5.0, 5.2]
}
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

@ -1,19 +1,23 @@
<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"><url>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>None</loc>
<lastmod>2020-05-22</lastmod>
<lastmod>2020-06-05</lastmod>
<changefreq>daily</changefreq>
</url><url>
</url>
<url>
<loc>None</loc>
<lastmod>2020-05-22</lastmod>
<lastmod>2020-06-05</lastmod>
<changefreq>daily</changefreq>
</url><url>
</url>
<url>
<loc>None</loc>
<lastmod>2020-05-22</lastmod>
<lastmod>2020-06-05</lastmod>
<changefreq>daily</changefreq>
</url><url>
</url>
<url>
<loc>None</loc>
<lastmod>2020-05-22</lastmod>
<lastmod>2020-06-05</lastmod>
<changefreq>daily</changefreq>
</url>
</urlset>

Binary file not shown.

@ -1,188 +1,188 @@
{
"parameters": {
"time periods": 2
"Parameters": {
"Time horizon (years)": 2
},
"products": {
"Products": {
"P1": {
"transportation cost": [0.015, 0.015],
"initial amounts": {
"Transportation cost ($/km/tonne)": [0.015, 0.015],
"Initial amounts": {
"C1": {
"latitude": 7.0,
"longitude": 7.0,
"amount": [934.56, 934.56]
"Latitude (deg)": 7.0,
"Longitude (deg)": 7.0,
"Amount (tonne)": [934.56, 934.56]
},
"C2": {
"latitude": 7.0,
"longitude": 19.0,
"amount": [198.95, 198.95]
"Latitude (deg)": 7.0,
"Longitude (deg)": 19.0,
"Amount (tonne)": [198.95, 198.95]
},
"C3": {
"latitude": 84.0,
"longitude": 76.0,
"amount": [212.97, 212.97]
"Latitude (deg)": 84.0,
"Longitude (deg)": 76.0,
"Amount (tonne)": [212.97, 212.97]
},
"C4": {
"latitude": 21.0,
"longitude": 16.0,
"amount": [352.19, 352.19]
"Latitude (deg)": 21.0,
"Longitude (deg)": 16.0,
"Amount (tonne)": [352.19, 352.19]
},
"C5": {
"latitude": 32.0,
"longitude": 92.0,
"amount": [510.33, 510.33]
"Latitude (deg)": 32.0,
"Longitude (deg)": 92.0,
"Amount (tonne)": [510.33, 510.33]
},
"C6": {
"latitude": 14.0,
"longitude": 62.0,
"amount": [471.66, 471.66]
"Latitude (deg)": 14.0,
"Longitude (deg)": 62.0,
"Amount (tonne)": [471.66, 471.66]
},
"C7": {
"latitude": 30.0,
"longitude": 83.0,
"amount": [785.21, 785.21]
"Latitude (deg)": 30.0,
"Longitude (deg)": 83.0,
"Amount (tonne)": [785.21, 785.21]
},
"C8": {
"latitude": 35.0,
"longitude": 40.0,
"amount": [706.17, 706.17]
"Latitude (deg)": 35.0,
"Longitude (deg)": 40.0,
"Amount (tonne)": [706.17, 706.17]
},
"C9": {
"latitude": 74.0,
"longitude": 52.0,
"amount": [30.08, 30.08]
"Latitude (deg)": 74.0,
"Longitude (deg)": 52.0,
"Amount (tonne)": [30.08, 30.08]
},
"C10": {
"latitude": 22.0,
"longitude": 54.0,
"amount": [536.52, 536.52]
"Latitude (deg)": 22.0,
"Longitude (deg)": 54.0,
"Amount (tonne)": [536.52, 536.52]
}
}
},
"P2": {
"transportation cost": [0.02, 0.02]
"Transportation cost ($/km/tonne)": [0.02, 0.02]
},
"P3": {
"transportation cost": [0.0125, 0.0125]
"Transportation cost ($/km/tonne)": [0.0125, 0.0125]
},
"P4": {
"transportation cost": [0.0175, 0.0175]
"Transportation cost ($/km/tonne)": [0.0175, 0.0175]
}
},
"plants": {
"Plants": {
"F1": {
"input": "P1",
"outputs": {
"Input": "P1",
"Outputs (tonne)": {
"P2": 0.2,
"P3": 0.5
},
"locations": {
"Locations": {
"L1": {
"latitude": 0.0,
"longitude": 0.0,
"disposal": {
"Latitude (deg)": 0.0,
"Longitude (deg)": 0.0,
"Disposal": {
"P2": {
"cost": [-10.0, -10.0],
"limit": [1.0, 1.0]
"Cost ($/tonne)": [-10.0, -10.0],
"Limit (tonne)": [1.0, 1.0]
},
"P3": {
"cost": [-10.0, -10.0],
"limit": [1.0, 1.0]
"Cost ($/tonne)": [-10.0, -10.0],
"Limit (tonne)": [1.0, 1.0]
}
},
"capacities": {
"Capacities (tonne)": {
"250.0": {
"opening cost": [500.0, 500.0],
"fixed operating cost": [30.0, 30.0],
"variable operating cost": [30.0, 30.0]
"Opening cost ($)": [500.0, 500.0],
"Fixed operating cost ($)": [30.0, 30.0],
"Variable operating cost ($/tonne)": [30.0, 30.0]
},
"1000.0": {
"opening cost": [1250.0, 1250.0],
"fixed operating cost": [30.0, 30.0],
"variable operating cost": [30.0, 30.0]
"Opening cost ($)": [1250.0, 1250.0],
"Fixed operating cost ($)": [30.0, 30.0],
"Variable operating cost ($/tonne)": [30.0, 30.0]
}
}
},
"L2": {
"latitude": 0.5,
"longitude": 0.5,
"capacities": {
"Latitude (deg)": 0.5,
"Longitude (deg)": 0.5,
"Capacities (tonne)": {
"0.0": {
"opening cost": [1000, 1000],
"fixed operating cost": [50.0, 50.0],
"variable operating cost": [50.0, 50.0]
"Opening cost ($)": [1000, 1000],
"Fixed operating cost ($)": [50.0, 50.0],
"Variable operating cost ($/tonne)": [50.0, 50.0]
},
"10000.0": {
"opening cost": [10000, 10000],
"fixed operating cost": [50.0, 50.0],
"variable operating cost": [50.0, 50.0]
"Opening cost ($)": [10000, 10000],
"Fixed operating cost ($)": [50.0, 50.0],
"Variable operating cost ($/tonne)": [50.0, 50.0]
}
}
}
}
},
"F2": {
"input": "P2",
"outputs": {
"Input": "P2",
"Outputs (tonne)": {
"P3": 0.05,
"P4": 0.80
},
"locations": {
"Locations": {
"L3": {
"latitude": 25.0,
"longitude": 65.0,
"disposal": {
"Latitude (deg)": 25.0,
"Longitude (deg)": 65.0,
"Disposal": {
"P3": {
"cost": [100.0, 100.0]
"Cost ($/tonne)": [100.0, 100.0]
}
},
"capacities": {
"Capacities (tonne)": {
"1000.0": {
"opening cost": [3000, 3000],
"fixed operating cost": [50.0, 50.0],
"variable operating cost": [50.0, 50.0]
"Opening cost ($)": [3000, 3000],
"Fixed operating cost ($)": [50.0, 50.0],
"Variable operating cost ($/tonne)": [50.0, 50.0]
}
}
},
"L4": {
"latitude": 0.75,
"longitude": 0.20,
"capacities": {
"Latitude (deg)": 0.75,
"Longitude (deg)": 0.20,
"Capacities (tonne)": {
"10000": {
"opening cost": [3000, 3000],
"fixed operating cost": [50.0, 50.0],
"variable operating cost": [50.0, 50.0]
"Opening cost ($)": [3000, 3000],
"Fixed operating cost ($)": [50.0, 50.0],
"Variable operating cost ($/tonne)": [50.0, 50.0]
}
}
}
}
},
"F3": {
"input": "P4",
"locations": {
"Input": "P4",
"Locations": {
"L5": {
"latitude": 100.0,
"longitude": 100.0,
"capacities": {
"Latitude (deg)": 100.0,
"Longitude (deg)": 100.0,
"Capacities (tonne)": {
"15000": {
"opening cost": [0.0, 0.0],
"fixed operating cost": [0.0, 0.0],
"variable operating cost": [-15.0, -15.0]
"Opening cost ($)": [0.0, 0.0],
"Fixed operating cost ($)": [0.0, 0.0],
"Variable operating cost ($/tonne)": [-15.0, -15.0]
}
}
}
}
},
"F4": {
"input": "P3",
"locations": {
"Input": "P3",
"Locations": {
"L6": {
"latitude": 50.0,
"longitude": 50.0,
"capacities": {
"Latitude (deg)": 50.0,
"Longitude (deg)": 50.0,
"Capacities (tonne)": {
"10000": {
"opening cost": [0.0, 0.0],
"fixed operating cost": [0.0, 0.0],
"variable operating cost": [-15.0, -15.0]
"Opening cost ($)": [0.0, 0.0],
"Fixed operating cost ($)": [0.0, 0.0],
"Variable operating cost ($/tonne)": [-15.0, -15.0]
}
}
}

@ -8,68 +8,68 @@ The **parameters** section describes details about the simulation itself.
| Key | Description
|:------------------------|---------------|
|`time periods` | Number of time periods in the simulation.
|`Time horizon (years)` | Number of years in the simulation.
### Example
```json
{
"parameters": {
"time periods": 2
"Parameters": {
"Time horizon (years)": 2
}
}
```
## Products
The **products** section describes all products and subproducts in the simulation. The field `instance["products"]` is a dictionary mapping the name of the product to a dictionary which describes its characteristics. Each product description contains the following keys:
The **products** section describes all products and subproducts in the simulation. The field `instance["Products"]` is a dictionary mapping the name of the product to a dictionary which describes its characteristics. Each product description contains the following keys:
| Key | Description
|:------------------------|---------------|
|`transportation cost` | The cost (in dollars per km per tonnes) to transport this product. Must be a timeseries.
|`initial amounts` | A dictionary mapping the name of each location to its description (see below). If this product is not initially available, this key may be omitted. Must be a timeseries.
| Key | Description
|:--------------------------------------|---------------|
|`Transportation cost ($/km/tonne)` | The cost to transport this product. Must be a timeseries.
|`Initial amounts` | A dictionary mapping the name of each location to its description (see below). If this product is not initially available, this key may be omitted. Must be a timeseries.
Each product may have some amount available at the beginning of each time period. In this case, the key `initial amounts` maps to a dictionary with the following keys:
| Key | Description
|:------------------------|---------------|
| `latitude` | The latitude of the location, in degrees.
| `longitude` | The longitude of the location, in degrees.
| `amount` | The amount (in tonnes) of the product initially available at the location. Must be a timeseries.
| `Latitude (deg)` | The latitude of the location.
| `Longitude (deg)` | The longitude of the location.
| `Amount (tonne)` | The amount of the product initially available at the location. Must be a timeseries.
### Example
```json
{
"products": {
"Products": {
"P1": {
"transportation cost": [0.015, 0.015],
"initial amounts": {
"Transportation cost ($/km/tonne)": [0.015, 0.015],
"Initial amounts": {
"C1": {
"latitude": 7.0,
"longitude": 7.0,
"amount": [934.56, 934.56]
"Latitude (deg)": 7.0,
"Longitude (deg)": 7.0,
"Amount (tonne)": [934.56, 934.56]
},
"C2": {
"latitude": 7.0,
"longitude": 19.0,
"amount": [198.95, 198.95]
"Latitude (deg)": 7.0,
"Longitude (deg)": 19.0,
"Amount (tonne)": [198.95, 198.95]
},
"C3": {
"latitude": 84.0,
"longitude": 76.0,
"amount": [212.97, 212.97]
"Latitude (deg)": 84.0,
"Longitude (deg)": 76.0,
"Amount (tonne)": [212.97, 212.97]
}
}
},
"P2": {
"transportation cost": [0.02, 0.02]
"Transportation cost ($/km/tonne)": [0.02, 0.02]
},
"P3": {
"transportation cost": [0.0125, 0.0125]
"Transportation cost ($/km/tonne)": [0.0125, 0.0125]
},
"P4": {
"transportation cost": [0.0175, 0.0175]
"Transportation cost ($/km/tonne)": [0.0175, 0.0175]
}
}
}
@ -77,70 +77,70 @@ Each product may have some amount available at the beginning of each time period
## Processing Plants
The **plants** section describes the available types of reverse manufacturing plants, their potential locations and associated costs, as well as their inputs and outputs. The field `instance["plants"]` is a dictionary mapping the name of the plant to a dictionary with the following keys:
The **plants** section describes the available types of reverse manufacturing plants, their potential locations and associated costs, as well as their inputs and outputs. The field `instance["Plants"]` is a dictionary mapping the name of the plant to a dictionary with the following keys:
| Key | Description
|:------------------------|---------------|
| `input` | The name of the product that this plant takes as input. Only one input is accepted per plant.
| `outputs` | A dictionary specifying how many tonnes of each product is produced for each tonnes of input. For example, if the plant outputs 0.5 tonnes of P2 and 0.25 tonnes of P3 for each tonnes of P1 provided, then this entry should be `{"P2": 0.5, "P3": 0.25}`. If the plant does not output anything, this key may be omitted.
| `locations` | A dictionary mapping the name of the location to a dictionary which describes the site characteristics (see below).
| `Input` | The name of the product that this plant takes as input. Only one input is accepted per plant.
| `Outputs (tonne)` | A dictionary specifying how many tonnes of each product is produced for each tonnes of input. For example, if the plant outputs 0.5 tonnes of P2 and 0.25 tonnes of P3 for each tonnes of P1 provided, then this entry should be `{"P2": 0.5, "P3": 0.25}`. If the plant does not output anything, this key may be omitted.
| `Locations` | A dictionary mapping the name of the location to a dictionary which describes the site characteristics (see below).
Each type of plant is associated with a set of potential locations where it can be built. Each location is represented by a dictionary with the following keys:
| Key | Description
|:------------------------|---------------|
| `latitude` | The latitude of the location, in degrees.
| `longitude` | The longitude of the location, in degrees.
| `disposal` | A dictionary describing what products can be disposed locally at the plant.
| `capacities` | A dictionary describing what plant sizes are allowed, and their characteristics.
| Key | Description
|:------------------------------|---------------|
| `Latitude (deg)` | The latitude of the location, in degrees.
| `Longitude (deg)` | The longitude of the location, in degrees.
| `Disposal` | A dictionary describing what products can be disposed locally at the plant.
| `Capacities (tonne)` | A dictionary describing what plant sizes are allowed, and their characteristics.
The keys in the `disposal` dictionary should be the names of the products. The values are dictionaries with the following keys:
| Key | Description
|:------------------------|---------------|
| `cost` | The cost (in dollars per tonnes) to dispose of the product. Must be a timeseries.
| `limit` | The maximum amount (in tonnes) that can be disposed of. If an unlimited amount can be disposed, this key may be omitted. Must be a timeseries.
| `Cost ($/tonne)` | The cost to dispose of the product. Must be a timeseries.
| `Limit (tonne)` | The maximum amount that can be disposed of. If an unlimited amount can be disposed, this key may be omitted. Must be a timeseries.
The keys in the `capacities` dictionary should be the amounts (in tonnes). The values are dictionaries with the following keys:
| Key | Description
|:------------------------|---------------|
| `opening cost` | The cost (in dollars) to open a plant of this size.
| `fixed operating cost` | The cost (in dollars) to keep the plant open, even if the plant doesn't process anything. Must be a timeseries.
| `variable operating cost` | The cost (in dollars per tonnes) that the plant incurs to process each tonne of input. Must be a timeseries.
| Key | Description
|:--------------------------------------|---------------|
| `Opening cost ($)` | The cost to open a plant of this size.
| `Fixed operating cost ($)` | The cost to keep the plant open, even if the plant doesn't process anything. Must be a timeseries.
| `Variable operating cost ($/tonne)` | The cost that the plant incurs to process each tonne of input. Must be a timeseries.
### Example
```json
{
"plants": {
"Plants": {
"F1": {
"input": "P1",
"outputs": {
"Input": "P1",
"Outputs (tonne)": {
"P2": 0.2,
"P3": 0.5
},
"locations": {
"Locations": {
"L1": {
"latitude": 0.0,
"longitude": 0.0,
"disposal": {
"Latitude (deg)": 0.0,
"Longitude (deg)": 0.0,
"Disposal": {
"P2": {
"cost": [-10.0, -12.0],
"limit": [1.0, 1.0]
"Cost ($/tonne)": [-10.0, -12.0],
"Limit (tonne)": [1.0, 1.0]
}
},
"capacities": {
"Capacities (tonne)": {
"100": {
"opening cost": [500, 530],
"fixed operating cost": [300.0, 310.0],
"variable operating cost": [5.0, 5.2]
"Opening cost ($)": [500, 530],
"Fixed operating cost ($)": [300.0, 310.0],
"Variable operating cost ($/tonne)": [5.0, 5.2]
},
"500": {
"opening cost": [750, 760],
"fixed operating cost": [400.0, 450.0],
"variable operating cost": [5.0, 5.2]
"Opening cost ($)": [750, 760],
"Fixed operating cost ($)": [400.0, 450.0],
"Variable operating cost ($/tonne)": [5.0, 5.2]
}
}
}

@ -60,74 +60,77 @@ function load(path::String)::Instance
if result !== nothing
if result isa JSONSchema.SingleIssue
path = join(result.path, "")
msg = "$(result.x) $(result.msg) in $(path)"
if length(path) == 0
path = "root"
end
msg = "$(result.msg) in $(path)"
else
msg = convert(String, result)
end
throw(msg)
end
T = json["parameters"]["time periods"]
T = json["Parameters"]["Time horizon (years)"]
plants = Plant[]
products = Product[]
collection_centers = CollectionCenter[]
prod_name_to_product = Dict{String, Product}()
# Create products
for (product_name, product_dict) in json["products"]
product = Product(product_name, product_dict["transportation cost"])
for (product_name, product_dict) in json["Products"]
product = Product(product_name, product_dict["Transportation cost (\$/km/tonne)"])
push!(products, product)
prod_name_to_product[product_name] = product
# Create collection centers
if "initial amounts" in keys(product_dict)
for (center_name, center_dict) in product_dict["initial amounts"]
if "Initial amounts" in keys(product_dict)
for (center_name, center_dict) in product_dict["Initial amounts"]
center = CollectionCenter(length(collection_centers) + 1,
center_name,
center_dict["latitude"],
center_dict["longitude"],
center_dict["Latitude (deg)"],
center_dict["Longitude (deg)"],
product,
center_dict["amount"])
center_dict["Amount (tonne)"])
push!(collection_centers, center)
end
end
end
# Create plants
for (plant_name, plant_dict) in json["plants"]
input = prod_name_to_product[plant_dict["input"]]
for (plant_name, plant_dict) in json["Plants"]
input = prod_name_to_product[plant_dict["Input"]]
output = Dict()
# Plant outputs
if "outputs" in keys(plant_dict)
if "Outputs (tonne)" in keys(plant_dict)
output = Dict(prod_name_to_product[key] => value
for (key, value) in plant_dict["outputs"]
for (key, value) in plant_dict["Outputs (tonne)"]
if value > 0)
end
for (location_name, location_dict) in plant_dict["locations"]
for (location_name, location_dict) in plant_dict["Locations"]
sizes = PlantSize[]
disposal_limit = Dict(p => [0.0 for t in 1:T] for p in keys(output))
disposal_cost = Dict(p => [0.0 for t in 1:T] for p in keys(output))
# Disposal
if "disposal" in keys(location_dict)
for (product_name, disposal_dict) in location_dict["disposal"]
if "Disposal" in keys(location_dict)
for (product_name, disposal_dict) in location_dict["Disposal"]
limit = [1e8 for t in 1:T]
if "limit" in keys(disposal_dict)
limit = disposal_dict["limit"]
if "Limit (tonne)" in keys(disposal_dict)
limit = disposal_dict["Limit (tonne)"]
end
disposal_limit[prod_name_to_product[product_name]] = limit
disposal_cost[prod_name_to_product[product_name]] = disposal_dict["cost"]
disposal_cost[prod_name_to_product[product_name]] = disposal_dict["Cost (\$/tonne)"]
end
end
# Capacities
for (capacity_name, capacity_dict) in location_dict["capacities"]
for (capacity_name, capacity_dict) in location_dict["Capacities (tonne)"]
push!(sizes, PlantSize(parse(Float64, capacity_name),
capacity_dict["variable operating cost"],
capacity_dict["fixed operating cost"],
capacity_dict["opening cost"]))
capacity_dict["Variable operating cost (\$/tonne)"],
capacity_dict["Fixed operating cost (\$)"],
capacity_dict["Opening cost (\$)"]))
end
length(sizes) > 1 || push!(sizes, sizes[1])
sort!(sizes, by = x -> x.capacity)
@ -145,8 +148,8 @@ function load(path::String)::Instance
location_name,
input,
output,
location_dict["latitude"],
location_dict["longitude"],
location_dict["Latitude (deg)"],
location_dict["Longitude (deg)"],
disposal_limit,
disposal_cost,
sizes)

@ -228,16 +228,16 @@ function get_solution(model::ManufacturingModel)
T = instance.time
output = Dict(
"plants" => Dict(),
"products" => Dict(),
"costs" => Dict(
"fixed operating" => zeros(T),
"variable operating" => zeros(T),
"opening" => zeros(T),
"transportation" => zeros(T),
"disposal" => zeros(T),
"expansion" => zeros(T),
"total" => zeros(T),
"Plants" => Dict(),
"Products" => Dict(),
"Costs" => Dict(
"Fixed operating (\$)" => zeros(T),
"Variable operating (\$)" => zeros(T),
"Opening (\$)" => zeros(T),
"Transportation (\$)" => zeros(T),
"Disposal (\$)" => zeros(T),
"Expansion (\$)" => zeros(T),
"Total (\$)" => zeros(T),
)
)
@ -253,13 +253,13 @@ function get_solution(model::ManufacturingModel)
# Products
for n in graph.collection_shipping_nodes
location_dict = Dict{Any, Any}(
"marginal cost" => [round(abs(JuMP.shadow_price(eqs.balance[n, t])), digits=2)
for t in 1:T],
"Marginal cost (\$/tonne)" => [round(abs(JuMP.shadow_price(eqs.balance[n, t])), digits=2)
for t in 1:T],
)
if n.product.name keys(output["products"])
output["products"][n.product.name] = Dict()
if n.product.name keys(output["Products"])
output["Products"][n.product.name] = Dict()
end
output["products"][n.product.name][n.location.name] = location_dict
output["Products"][n.product.name][n.location.name] = location_dict
end
# Plants
@ -267,36 +267,36 @@ function get_solution(model::ManufacturingModel)
skip_plant = true
process_node = plant_to_process_node[plant]
plant_dict = Dict{Any, Any}(
"input" => Dict(),
"output" => Dict(
"send" => Dict(),
"dispose" => Dict(),
"Input" => Dict(),
"Output" => Dict(
"Send" => Dict(),
"Dispose" => Dict(),
),
"total input" => [0.0 for t in 1:T],
"total output" => Dict(),
"latitude" => plant.latitude,
"longitude" => plant.longitude,
"capacity" => [JuMP.value(vars.capacity[process_node, t])
for t in 1:T],
"opening cost" => [JuMP.value(vars.open_plant[process_node, t]) *
plant.sizes[1].opening_cost[t]
for t in 1:T],
"fixed operating cost" => [JuMP.value(vars.is_open[process_node, t]) *
plant.sizes[1].fixed_operating_cost[t] +
JuMP.value(vars.expansion[process_node, t]) *
slope_fix_oper_cost(plant, t)
for t in 1:T],
"expansion cost" => [JuMP.value(vars.expansion[process_node, t]) *
(if t < T
slope_open(plant, t) - slope_open(plant, t + 1)
else
slope_open(plant, t)
end)
for t in 1:T],
"Total input (tonne)" => [0.0 for t in 1:T],
"Total output" => Dict(),
"Latitude (deg)" => plant.latitude,
"Longitude (deg)" => plant.longitude,
"Capacity (tonne)" => [JuMP.value(vars.capacity[process_node, t])
for t in 1:T],
"Opening cost (\$)" => [JuMP.value(vars.open_plant[process_node, t]) *
plant.sizes[1].opening_cost[t]
for t in 1:T],
"Fixed operating cost (\$)" => [JuMP.value(vars.is_open[process_node, t]) *
plant.sizes[1].fixed_operating_cost[t] +
JuMP.value(vars.expansion[process_node, t]) *
slope_fix_oper_cost(plant, t)
for t in 1:T],
"Expansion cost (\$)" => [JuMP.value(vars.expansion[process_node, t]) *
(if t < T
slope_open(plant, t) - slope_open(plant, t + 1)
else
slope_open(plant, t)
end)
for t in 1:T],
)
output["costs"]["fixed operating"] += plant_dict["fixed operating cost"]
output["costs"]["opening"] += plant_dict["opening cost"]
output["costs"]["expansion"] += plant_dict["expansion cost"]
output["Costs"]["Fixed operating (\$)"] += plant_dict["Fixed operating cost (\$)"]
output["Costs"]["Opening (\$)"] += plant_dict["Opening cost (\$)"]
output["Costs"]["Expansion (\$)"] += plant_dict["Expansion cost (\$)"]
# Inputs
for a in process_node.incoming_arcs
@ -306,14 +306,16 @@ function get_solution(model::ManufacturingModel)
end
skip_plant = false
dict = Dict{Any, Any}(
"amount" => vals,
"distance" => a.values["distance"],
"latitude" => a.source.location.latitude,
"longitude" => a.source.location.longitude,
"transportation cost" => [a.source.product.transportation_cost[t] * vals[t]
for t in 1:T],
"variable operating cost" => [plant.sizes[1].variable_operating_cost[t] * vals[t]
for t in 1:T],
"Amount (tonne)" => vals,
"Distance (km)" => a.values["distance"],
"Latitude (deg)" => a.source.location.latitude,
"Longitude (deg)" => a.source.location.longitude,
"Transportation cost (\$)" => [a.source.product.transportation_cost[t] *
vals[t] *
a.values["distance"]
for t in 1:T],
"Variable operating cost (\$)" => [plant.sizes[1].variable_operating_cost[t] * vals[t]
for t in 1:T],
)
if a.source.location isa CollectionCenter
plant_name = "Origin"
@ -323,31 +325,31 @@ function get_solution(model::ManufacturingModel)
location_name = a.source.location.location_name
end
if plant_name keys(plant_dict["input"])
plant_dict["input"][plant_name] = Dict()
if plant_name keys(plant_dict["Input"])
plant_dict["Input"][plant_name] = Dict()
end
plant_dict["input"][plant_name][location_name] = dict
plant_dict["total input"] += vals
output["costs"]["transportation"] += dict["transportation cost"]
output["costs"]["variable operating"] += dict["variable operating cost"]
plant_dict["Input"][plant_name][location_name] = dict
plant_dict["Total input (tonne)"] += vals
output["Costs"]["Transportation (\$)"] += dict["Transportation cost (\$)"]
output["Costs"]["Variable operating (\$)"] += dict["Variable operating cost (\$)"]
end
# Outputs
for shipping_node in plant_to_shipping_nodes[plant]
product_name = shipping_node.product.name
plant_dict["total output"][product_name] = zeros(T)
plant_dict["output"]["send"][product_name] = product_dict = Dict()
plant_dict["Total output"][product_name] = zeros(T)
plant_dict["Output"]["Send"][product_name] = product_dict = Dict()
disposal_amount = [JuMP.value(vars.dispose[shipping_node, t]) for t in 1:T]
if sum(disposal_amount) > 1e-5
skip_plant = false
plant_dict["output"]["dispose"][product_name] = disposal_dict = Dict()
disposal_dict["amount"] = [JuMP.value(model.vars.dispose[shipping_node, t]) for t in 1:T]
disposal_dict["cost"] = [disposal_dict["amount"][t] *
plant.disposal_cost[shipping_node.product][t]
for t in 1:T]
plant_dict["total output"][product_name] += disposal_amount
output["costs"]["disposal"] += disposal_dict["cost"]
plant_dict["Output"]["Dispose"][product_name] = disposal_dict = Dict()
disposal_dict["Amount (tonne)"] = [JuMP.value(model.vars.dispose[shipping_node, t]) for t in 1:T]
disposal_dict["Cost (\$)"] = [disposal_dict["Amount (tonne)"][t] *
plant.disposal_cost[shipping_node.product][t]
for t in 1:T]
plant_dict["Total output"][product_name] += disposal_amount
output["Costs"]["Disposal (\$)"] += disposal_dict["Cost (\$)"]
end
for a in shipping_node.outgoing_arcs
@ -357,27 +359,27 @@ function get_solution(model::ManufacturingModel)
end
skip_plant = false
dict = Dict(
"amount" => vals,
"distance" => a.values["distance"],
"latitude" => a.dest.location.latitude,
"longitude" => a.dest.location.longitude,
"Amount (tonne)" => vals,
"Distance (km)" => a.values["distance"],
"Latitude (deg)" => a.dest.location.latitude,
"Longitude (deg)" => a.dest.location.longitude,
)
if a.dest.location.plant_name keys(product_dict)
product_dict[a.dest.location.plant_name] = Dict()
end
product_dict[a.dest.location.plant_name][a.dest.location.location_name] = dict
plant_dict["total output"][product_name] += vals
plant_dict["Total output"][product_name] += vals
end
end
if !skip_plant
if plant.plant_name keys(output["plants"])
output["plants"][plant.plant_name] = Dict()
if plant.plant_name keys(output["Plants"])
output["Plants"][plant.plant_name] = Dict()
end
output["plants"][plant.plant_name][plant.location_name] = plant_dict
output["Plants"][plant.plant_name][plant.location_name] = plant_dict
end
end
output["costs"]["total"] = sum(values(output["costs"]))
output["Costs"]["Total (\$)"] = sum(values(output["Costs"]))
return output
end

@ -1,7 +1,7 @@
{
"$schema": "http://json-schema.org/draft-07/schema#",
"$id": "https://anl-ceeesa.github.io/RELOG/input",
"title": "Schema for ReverseManufacturing Input File",
"title": "Schema for RELOG Input File",
"definitions": {
"TimeSeries": {
"type": "array",
@ -12,10 +12,10 @@
"Parameters": {
"type": "object",
"properties": {
"time": { "type": "number" }
"Time horizon (years)": { "type": "number" }
},
"required": [
"time periods"
"Time horizon (years)"
]
},
"Plant": {
@ -23,16 +23,16 @@
"additionalProperties": {
"type": "object",
"properties": {
"input": { "type": "string" },
"outputs": {
"Input": { "type": "string" },
"Outputs (tonne)": {
"type": "object",
"additionalProperties": { "type": "number" }
},
"locations": { "$ref": "#/definitions/PlantLocation" }
"Locations": { "$ref": "#/definitions/PlantLocation" }
},
"required": [
"input",
"locations"
"Input",
"Locations"
]
}
},
@ -41,42 +41,42 @@
"additionalProperties": {
"type": "object",
"properties": {
"latitude": { "type": "number" },
"longitude": { "type": "number" },
"disposal": {
"Latitude (deg)": { "type": "number" },
"Longitude (deg)": { "type": "number" },
"Disposal": {
"type": "object",
"additionalProperties": {
"type": "object",
"properties": {
"cost": { "$ref": "#/definitions/TimeSeries" },
"limit": { "$ref": "#/definitions/TimeSeries" }
"Cost ($/tonne)": { "$ref": "#/definitions/TimeSeries" },
"Limit (tonne)": { "$ref": "#/definitions/TimeSeries" }
},
"required": [
"cost"
"Cost ($/tonne)"
]
}
},
"capacities": {
"Capacities (tonne)": {
"type": "object",
"additionalProperties": {
"type": "object",
"properties": {
"variable operating cost": { "$ref": "#/definitions/TimeSeries" },
"fixed operating cost": { "$ref": "#/definitions/TimeSeries" },
"opening cost": { "$ref": "#/definitions/TimeSeries" }
"Variable operating cost ($/tonne)": { "$ref": "#/definitions/TimeSeries" },
"Fixed operating cost ($)": { "$ref": "#/definitions/TimeSeries" },
"Opening cost ($)": { "$ref": "#/definitions/TimeSeries" }
},
"required": [
"variable operating cost",
"fixed operating cost",
"opening cost"
"Variable operating cost ($/tonne)",
"Fixed operating cost ($)",
"Opening cost ($)"
]
}
}
},
"required": [
"latitude",
"longitude",
"capacities"
"Latitude (deg)",
"Longitude (deg)",
"Capacities (tonne)"
]
}
},
@ -85,14 +85,14 @@
"additionalProperties": {
"type": "object",
"properties": {
"latitude": { "type": "number" },
"longitude": { "type": "number" },
"amount": { "$ref": "#/definitions/TimeSeries" }
"Latitude (deg)": { "type": "number" },
"Longitude (deg)": { "type": "number" },
"Amount (tonne)": { "$ref": "#/definitions/TimeSeries" }
},
"required": [
"latitude",
"longitude",
"amount"
"Latitude (deg)",
"Longitude (deg)",
"Amount (tonne)"
]
}
},
@ -101,23 +101,24 @@
"additionalProperties": {
"type": "object",
"properties": {
"transportation cost": { "$ref": "#/definitions/TimeSeries" },
"initial amounts": { "$ref": "#/definitions/InitialAmount" }
"Transportation cost ($/km/tonne)": { "$ref": "#/definitions/TimeSeries" },
"Initial amounts": { "$ref": "#/definitions/InitialAmount" }
},
"required": [
"transportation cost"
"Transportation cost ($/km/tonne)"
]
}
}
},
"type": "object",
"properties": {
"parameters": { "$ref": "#/definitions/Parameters" },
"plants": { "$ref": "#/definitions/Plant" },
"products": { "$ref": "#/definitions/Product" }
"Parameters": { "$ref": "#/definitions/Parameters" },
"Plants": { "$ref": "#/definitions/Plant" },
"Products": { "$ref": "#/definitions/Product" }
},
"required": [
"plants",
"products"
"Parameters",
"Plants",
"Products"
]
}

@ -45,17 +45,17 @@ using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
solution = RELOG.solve("$(pwd())/../instances/s1.json")
JSON.print(stdout, solution, 4)
@test "costs" in keys(solution)
@test "fixed operating" in keys(solution["costs"])
@test "transportation" in keys(solution["costs"])
@test "variable operating" in keys(solution["costs"])
@test "total" in keys(solution["costs"])
@test "plants" in keys(solution)
@test "F1" in keys(solution["plants"])
@test "F2" in keys(solution["plants"])
@test "F3" in keys(solution["plants"])
@test "F4" in keys(solution["plants"])
@test "Costs" in keys(solution)
@test "Fixed operating (\$)" in keys(solution["Costs"])
@test "Transportation (\$)" in keys(solution["Costs"])
@test "Variable operating (\$)" in keys(solution["Costs"])
@test "Total (\$)" in keys(solution["Costs"])
@test "Plants" in keys(solution)
@test "F1" in keys(solution["Plants"])
@test "F2" in keys(solution["Plants"])
@test "F3" in keys(solution["Plants"])
@test "F4" in keys(solution["Plants"])
end
end

Loading…
Cancel
Save